A survey on symplectic singularities and symplectic resolutions
Baohua Fu[1]
- [1] Laboratoire J. Leray Université de Nantes, Faculté des sciences 2, Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03 France
Annales mathématiques Blaise Pascal (2006)
- Volume: 13, Issue: 2, page 209-236
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topFu, Baohua. "A survey on symplectic singularities and symplectic resolutions." Annales mathématiques Blaise Pascal 13.2 (2006): 209-236. <http://eudml.org/doc/10531>.
@article{Fu2006,
abstract = {This is a survey written in an expositional style on the topic of symplectic singularities and symplectic resolutions.},
affiliation = {Laboratoire J. Leray Université de Nantes, Faculté des sciences 2, Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03 France},
author = {Fu, Baohua},
journal = {Annales mathématiques Blaise Pascal},
keywords = {symplectic variety; symplectic resolution; birational geometry},
language = {eng},
month = {7},
number = {2},
pages = {209-236},
publisher = {Annales mathématiques Blaise Pascal},
title = {A survey on symplectic singularities and symplectic resolutions},
url = {http://eudml.org/doc/10531},
volume = {13},
year = {2006},
}
TY - JOUR
AU - Fu, Baohua
TI - A survey on symplectic singularities and symplectic resolutions
JO - Annales mathématiques Blaise Pascal
DA - 2006/7//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 2
SP - 209
EP - 236
AB - This is a survey written in an expositional style on the topic of symplectic singularities and symplectic resolutions.
LA - eng
KW - symplectic variety; symplectic resolution; birational geometry
UR - http://eudml.org/doc/10531
ER -
References
top- V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) (1998), 1-32, Publish or Perish, Inc., Houston Zbl0963.14015MR1672108
- V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. 1 (1999), 5-33 Zbl0943.14004MR1677693
- A. Beauville, Fano contact manifolds and nilpotent orbits, Comment. Math. Helv 73 (1998), 566-583 Zbl0946.53046MR1639888
- A. Beauville, Symplectic singularities, Invent. Math. 139 (2000), 541-549 Zbl0958.14001MR1738060
- R. Bezrukavnikov, D. Kaledin, McKay equivalence for symplectic resolutions of singularities, Proc. Steklov Inst. Math. 246 (2004), 13-33 Zbl1137.14301MR2101282
- A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497 Zbl0275.14007MR366940
- F. Bottacin, Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math. 121 (1995), 421-436 Zbl0829.14019MR1346215
- D. Burns, Y. Hu, T. Luo, HyperKähler manifolds and birational transformations in dimension 4, Vector bundles and representation theory (Columbia, MO, 2002) (2003), 141-149, Amer. Math. Soc. Zbl1080.14508MR1987745
- Y. Cho, Y. Miyaoka, N. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) (2002), 1-88, Miyaoka Zbl1063.14065MR1929791
- J. Choy, Y.-H. Kiem, Nonexistence of crepant resolution of some moduli spaces of sheaves on a K3 surface, (2004) Zbl1126.14051
- J. Choy, Y.-H. Kiem, On the existence of a crepant resolution of some moduli spaces of sheaves on an abelian surface, Math. Z. 252 (2006), 557-575 Zbl05013686MR2207759
- A. M. Cohen, Finite quaternionic reflection groups, J. Algebra 64 (1980), 293-324 Zbl0433.20035MR579063
- D. Collingwood, W. Mc Govern, Nilpotent orbits in semi-simple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008MR1251060
- S. Druel, Singularités symplectiques, J. Algebraic Geom. 13 (2004), 427-439 Zbl1068.32018MR2047675
- B. Fu, Symplectic resolutions for coverings of nilpotent orbits, C. R. Acad. Sci. 336 (2003), 159-162 Zbl1068.14055MR1969571
- B. Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003), 167-186 Zbl1072.14058MR1943745
- B. Fu, Symplectic resolutions for nilpotent orbits (II), C. R. Acad. Sci. 337 (2003), 277-281 Zbl1073.14547MR2009121
- B. Fu, Birational geometry in codimension 2 of symplectic resolutions, (2004)
- B. Fu, Extremal contractions, stratified Mukai flops and Springer maps, (2006) Zbl1120.14039
- B. Fu, Mukai flops and deformations of symplectic resolutions, Math. Z. 253 (2006), 87-96 Zbl1098.14009MR2206638
- B. Fu, Y. Namikawa, Uniqueness of crepant resolutions and symplectic singularities, Ann. Inst. Fourier 54 (2004), 1-19 Zbl1063.14018MR2069119
- V. Ginzburg, D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), 1-57 Zbl1062.53074MR2065506
- I. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc. 35 (2003), 321-336 Zbl1042.16017MR1960942
- Robert M. Guralnick, J. Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), 519-571 Zbl1037.20016MR2009321
- R. Hartshorne, Algebraic Geometry, (1977), Springer-Verlag Zbl0367.14001MR463157
- W. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), 217-234 Zbl0364.20048MR480765
- Y. Hu, Geometric Invariant Theory and Birational Geometry, (2005)
- Y. Hu, S.-T. Yau, HyperKähler manifolds and birational transformations, Adv. Theor. Math. Phys. 6 (2002), 557-574 Zbl1044.81105MR1957670
- D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), 63-113 Zbl0953.53031MR1664696
- D. Kaledin, Symplectic singularities from the Poisson point of view, J. Reine Angew. Math. Zbl1121.53056
- D. Kaledin, Symplectic resolutions: deformations and birational maps, (2000)
- D. Kaledin, McKay correspondence for symplectic quotient singularities, Invent. math. 148 (2002), 150-175 Zbl1060.14020MR1892847
- D. Kaledin, On crepant resolutions of symplectic quotient singularities, Selecta Math. (N.S.) 9 (2003), 529-555 Zbl1066.14003MR2031751
- D. Kaledin, Derived equivalence by quantization, (2005) Zbl1149.14009
- D. Kaledin, M. Lehn, Local structure of hyperKaehler singularities in O’Grady’s examples, (2004) Zbl1160.14006
- D. Kaledin, M. Lehn, C. Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006), 591-614 Zbl1096.14037MR2221132
- Y. Kawamata, D-equivalence and K-equivalence, J. Differential Geom. 61 (2002), 147-171 Zbl1056.14021MR1949787
- H. Kraft, C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247 Zbl0434.14026MR549399
- E. Markman, Brill-Noether duality for moduli spaces of sheaves of surfaces, J. Algebr. Geom. 10 (2001), 623-694 Zbl1074.14525MR1838974
- S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or surface, Invent. Math. 77 (1984), 101-116 Zbl0565.14002MR751133
- Y. Namikawa, Deformation theory of singular symplectic n-folds, Math. Ann. 319 (2001), 597-623 Zbl0989.53055MR1819886
- Y. Namikawa, Extension of 2-forms and symplectic varieties, J. Reine Angew. Math. 539 (2001), 123-147 Zbl0996.53050MR1863856
- Y. Namikawa, A note on symplectic singularitie, (2001)
- Y. Namikawa, Birational geometry of symplectic resolutions of nilpotent orbits, (2004) Zbl1117.14018
- Y. Namikawa, Birational geometry of symplectic resolutions of nilpotent orbits II, (2004) Zbl1117.14018
- Y. Namikawa, Flops and Poisson deformations of symplectic varieties, (2005) Zbl1148.14008
- Y. Namikawa, On deformations of Q-factorial symplectic varieties, (2005) Zbl1122.14029
- K. O’Grady, Desingularized moduli spaces of sheaves on a , J. reine angew. Math. 512 (1999), 49-117 Zbl0749.14030MR1139878
- K. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), 435-505 Zbl1018.32028MR1796694
- D. Panyushev, Rationality of singularities and the Gorenstein property for nilpotent orbits, Funct. Anal. Appl. 25 (1991), 225-226 Zbl1094.14010MR1966025
- M. Verbitsky, Holomorphic symplectic geometry and orbifold singularities, Asian J. Math. 4 (2000), 553-563 Zbl1036.14007MR2010734
- J. Wierzba, Contractions of symplectic varieties, J. Algebraic Geom. 12 (2003), 507-534 Zbl1094.14010
- J. Wierzba, J. A. Wisniewski, Small contractions of symplectic 4-folds, Duke Math. J. 120 (2003), 65-95 Zbl1036.14007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.