Uniqueness of crepant resolutions and symplectic singularities

Baohua Fu[1]; Yoshinori Namikawa[2]

  • [1] Université de Nice, Parc Valrose, Laboratoire J.A. Dieudonné, 06108 Nice cedex 02 (France)
  • [2] Departement of Mathematics, Kyoto University, Graduate School of Science, Kiat-Shirakawa Oiwake-cho, Kyoto 606-8502 (Japon)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 1, page 1-19
  • ISSN: 0373-0956

Abstract

top
We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.

How to cite

top

Fu, Baohua, and Namikawa, Yoshinori. "Uniqueness of crepant resolutions and symplectic singularities." Annales de l’institut Fourier 54.1 (2004): 1-19. <http://eudml.org/doc/116105>.

@article{Fu2004,
abstract = {We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.},
affiliation = {Université de Nice, Parc Valrose, Laboratoire J.A. Dieudonné, 06108 Nice cedex 02 (France); Departement of Mathematics, Kyoto University, Graduate School of Science, Kiat-Shirakawa Oiwake-cho, Kyoto 606-8502 (Japon)},
author = {Fu, Baohua, Namikawa, Yoshinori},
journal = {Annales de l’institut Fourier},
keywords = {crepant resolutions; symplectic singularities; symplectic manifold; crepant resolution},
language = {eng},
number = {1},
pages = {1-19},
publisher = {Association des Annales de l'Institut Fourier},
title = {Uniqueness of crepant resolutions and symplectic singularities},
url = {http://eudml.org/doc/116105},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Fu, Baohua
AU - Namikawa, Yoshinori
TI - Uniqueness of crepant resolutions and symplectic singularities
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 1
EP - 19
AB - We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.
LA - eng
KW - crepant resolutions; symplectic singularities; symplectic manifold; crepant resolution
UR - http://eudml.org/doc/116105
ER -

References

top
  1. A. Beauville, Symplectic singularities, Invent. Math 139 (2000), 541-549 Zbl0958.14001MR1738060
  2. K. Cho, Y. Miyaoka, N.I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) 35 (2002), 1-88, Math. Soc. Japan, Tokyo Zbl1063.14065MR1929792
  3. O. Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
  4. B. Fu, Symplectic resolutions for nilpotent orbits, Invent. Math 151 (2003), 167-186 Zbl1072.14058MR1943745
  5. B. Fu, Symplectic resolutions for nilpotent orbits (II), C. R. Math. Acad. Sci. Paris 336 (2003), 277-281 Zbl1073.14547MR2009121
  6. A. Fujiki, On primitively symplectic compact Kähler V -manifolds of dimension four, Classification of algebraic and analytic manifolds (Katata, 1982) 39 (1983), 71-250, Birkhäuser, Boston Zbl0549.32018MR728609
  7. R. Goto, On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, Infinite analysis, Part A, B (Kyoto, 1991) 16 (1991), 317-338, World Sci. Publishing, River Edge, NJ Zbl0924.53023MR1187554
  8. W.H. Hesselink, Polarizations in the classical groups, Math. Z 160 (1978), 217-234 Zbl0364.20048MR480765
  9. D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math 135 (1999), 63-113 Zbl0953.53031MR1664696
  10. D. Kaledin, Dynkin diagrams and crepant resolutions of quotient singularities Zbl1066.14003
  11. D. Kaledin, McKay correspondence for symplectic quotient singularities, Invent. Math 148 (2002), 151-175 Zbl1060.14020MR1892847
  12. D. Kaledin, Symplectic resolutions: deformations and birational maps Zbl1182.53078
  13. Y. Kawamata, K. Matsuki, The number of the minimal models for a 3-fold of general type is finite, Math. Ann. 276 (1987), 595-598 Zbl0596.14031MR879538
  14. H. Kraft, C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv 57 (1982), 539-602 Zbl0511.14023MR694606
  15. K. Matsuki, Termination of flops for 4-folds, Amer. J. Math 113 (1991), 835-859 Zbl0746.14017MR1129294
  16. Y. Namikawa, Deformation theory of singular symplectic n -folds, Math. Ann 319 (2001), 597-623 Zbl0989.53055MR1819886
  17. Y. Namikawa, Mukai flops and derived categories II Zbl1086.14011MR2096144
  18. V.V. Shokurov, Prelimiting flips, Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry 240 (2003), 82-219 Zbl1082.14019MR1993750
  19. J. Wierzba, Contractions of symplectic varieties, J. Algebraic Geom 12 (2003), 507-534 Zbl1094.14010MR1966025
  20. J. Wierzba, Symplectic Singularities, (2000) Zbl1094.14010
  21. J. Wierzba, J.A. Wisniewski, Small contractions of symplectic 4-folds, Duke Math. J. 120 (2003), 65-95 Zbl1036.14007MR2010734

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.