Uniqueness of crepant resolutions and symplectic singularities
Baohua Fu[1]; Yoshinori Namikawa[2]
- [1] Université de Nice, Parc Valrose, Laboratoire J.A. Dieudonné, 06108 Nice cedex 02 (France)
- [2] Departement of Mathematics, Kyoto University, Graduate School of Science, Kiat-Shirakawa Oiwake-cho, Kyoto 606-8502 (Japon)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 1, page 1-19
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFu, Baohua, and Namikawa, Yoshinori. "Uniqueness of crepant resolutions and symplectic singularities." Annales de l’institut Fourier 54.1 (2004): 1-19. <http://eudml.org/doc/116105>.
@article{Fu2004,
abstract = {We prove the uniqueness of crepant resolutions for some quotient singularities and for
some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4-
dimensional symplectic singularities is proved. We also give an example of a symplectic
singularity which admits two non-equivalent symplectic resolutions.},
affiliation = {Université de Nice, Parc Valrose, Laboratoire J.A. Dieudonné, 06108 Nice cedex 02 (France); Departement of Mathematics, Kyoto University, Graduate School of Science, Kiat-Shirakawa Oiwake-cho, Kyoto 606-8502 (Japon)},
author = {Fu, Baohua, Namikawa, Yoshinori},
journal = {Annales de l’institut Fourier},
keywords = {crepant resolutions; symplectic singularities; symplectic manifold; crepant resolution},
language = {eng},
number = {1},
pages = {1-19},
publisher = {Association des Annales de l'Institut Fourier},
title = {Uniqueness of crepant resolutions and symplectic singularities},
url = {http://eudml.org/doc/116105},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Fu, Baohua
AU - Namikawa, Yoshinori
TI - Uniqueness of crepant resolutions and symplectic singularities
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 1
EP - 19
AB - We prove the uniqueness of crepant resolutions for some quotient singularities and for
some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4-
dimensional symplectic singularities is proved. We also give an example of a symplectic
singularity which admits two non-equivalent symplectic resolutions.
LA - eng
KW - crepant resolutions; symplectic singularities; symplectic manifold; crepant resolution
UR - http://eudml.org/doc/116105
ER -
References
top- A. Beauville, Symplectic singularities, Invent. Math 139 (2000), 541-549 Zbl0958.14001MR1738060
- K. Cho, Y. Miyaoka, N.I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) 35 (2002), 1-88, Math. Soc. Japan, Tokyo Zbl1063.14065MR1929792
- O. Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
- B. Fu, Symplectic resolutions for nilpotent orbits, Invent. Math 151 (2003), 167-186 Zbl1072.14058MR1943745
- B. Fu, Symplectic resolutions for nilpotent orbits (II), C. R. Math. Acad. Sci. Paris 336 (2003), 277-281 Zbl1073.14547MR2009121
- A. Fujiki, On primitively symplectic compact Kähler -manifolds of dimension four, Classification of algebraic and analytic manifolds (Katata, 1982) 39 (1983), 71-250, Birkhäuser, Boston Zbl0549.32018MR728609
- R. Goto, On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, Infinite analysis, Part A, B (Kyoto, 1991) 16 (1991), 317-338, World Sci. Publishing, River Edge, NJ Zbl0924.53023MR1187554
- W.H. Hesselink, Polarizations in the classical groups, Math. Z 160 (1978), 217-234 Zbl0364.20048MR480765
- D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math 135 (1999), 63-113 Zbl0953.53031MR1664696
- D. Kaledin, Dynkin diagrams and crepant resolutions of quotient singularities Zbl1066.14003
- D. Kaledin, McKay correspondence for symplectic quotient singularities, Invent. Math 148 (2002), 151-175 Zbl1060.14020MR1892847
- D. Kaledin, Symplectic resolutions: deformations and birational maps Zbl1182.53078
- Y. Kawamata, K. Matsuki, The number of the minimal models for a 3-fold of general type is finite, Math. Ann. 276 (1987), 595-598 Zbl0596.14031MR879538
- H. Kraft, C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv 57 (1982), 539-602 Zbl0511.14023MR694606
- K. Matsuki, Termination of flops for 4-folds, Amer. J. Math 113 (1991), 835-859 Zbl0746.14017MR1129294
- Y. Namikawa, Deformation theory of singular symplectic -folds, Math. Ann 319 (2001), 597-623 Zbl0989.53055MR1819886
- Y. Namikawa, Mukai flops and derived categories II Zbl1086.14011MR2096144
- V.V. Shokurov, Prelimiting flips, Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry 240 (2003), 82-219 Zbl1082.14019MR1993750
- J. Wierzba, Contractions of symplectic varieties, J. Algebraic Geom 12 (2003), 507-534 Zbl1094.14010MR1966025
- J. Wierzba, Symplectic Singularities, (2000) Zbl1094.14010
- J. Wierzba, J.A. Wisniewski, Small contractions of symplectic 4-folds, Duke Math. J. 120 (2003), 65-95 Zbl1036.14007MR2010734
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.