Two new classes of trees embeddable into hypercubes
Mounira Nekri; Abdelhafid Berrachedi
RAIRO - Operations Research (2010)
- Volume: 38, Issue: 4, page 295-303
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Kobeissi, Plongement de graphes dans l'Hypercube. Thèse de Doctorat d'état en informatique. Université Joseph Fourier Grenoble 1 (2001).
- F. Harary, M. Lewinter and W. Widulski, On two legged caterpillars which span hypercubes. Cong. Numer. (1988) 103–108.
- I. Havel, Embedding certain trees into hypercube, in Recent Advances in graph theory. Academia, Praha (1974) 257–262.
- I. Havel and P. Liebel, One legged caterpillars spans hypercubes. J. Graph Theory10 (1986) 69–77.
- I. Havel and P. Liebel, Embedding the dichotomie tree into the cube (Czech with english summary). Cas. Prest. Mat. 97 (1972) 201–205.
- I. Havel and J. Moravek, B-valuations of graphs. Czech. Math. J. 22 (1972) 388–351.
- I. Havel, On hamiltonian circuits and spanning trees of hypercubes. Cas. prest. Mat.109 (1984) 135–152.
- L. Nebesky, On cubes and dichotomic trees. Cas Prest. Mat.99 (1974).
- L. Nebesky, On quasistars in n-cubes. Cas. Prest. Mat.109 (1984) 153–156.