A note on the cubical dimension of new classes of binary trees
Kamal Kabyl; Abdelhafid Berrachedi; Éric Sopena
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 151-160
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKabyl, Kamal, Berrachedi, Abdelhafid, and Sopena, Éric. "A note on the cubical dimension of new classes of binary trees." Czechoslovak Mathematical Journal 65.1 (2015): 151-160. <http://eudml.org/doc/270054>.
@article{Kabyl2015,
abstract = {The cubical dimension of a graph $G$ is the smallest dimension of a hypercube into which $G$ is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with $2^n$ vertices, $n\ge 1$, is $n$. The 2-rooted complete binary tree of depth $n$ is obtained from two copies of the complete binary tree of depth $n$ by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice a 2-rooted complete binary tree and prove that every such balanced tree satisfies the conjecture of Havel.},
author = {Kabyl, Kamal, Berrachedi, Abdelhafid, Sopena, Éric},
journal = {Czechoslovak Mathematical Journal},
keywords = {cubical dimension; embedding; Havel's conjecture; hypercube; tree},
language = {eng},
number = {1},
pages = {151-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the cubical dimension of new classes of binary trees},
url = {http://eudml.org/doc/270054},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Kabyl, Kamal
AU - Berrachedi, Abdelhafid
AU - Sopena, Éric
TI - A note on the cubical dimension of new classes of binary trees
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 151
EP - 160
AB - The cubical dimension of a graph $G$ is the smallest dimension of a hypercube into which $G$ is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with $2^n$ vertices, $n\ge 1$, is $n$. The 2-rooted complete binary tree of depth $n$ is obtained from two copies of the complete binary tree of depth $n$ by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice a 2-rooted complete binary tree and prove that every such balanced tree satisfies the conjecture of Havel.
LA - eng
KW - cubical dimension; embedding; Havel's conjecture; hypercube; tree
UR - http://eudml.org/doc/270054
ER -
References
top- Bezrukov, S., Monien, B., Unger, W., Wechsung, G., 10.1016/S0166-218X(97)00101-7, Discrete Appl. Math. 83 (1998), 21-29. (1998) Zbl0906.05019MR1622961DOI10.1016/S0166-218X(97)00101-7
- Chen, C.-C., Chen, R.-J., 10.1016/0020-0190(95)00010-A, Inf. Process. Lett. 54 (1995), 69-72. (1995) Zbl1022.68594MR1332424DOI10.1016/0020-0190(95)00010-A
- Choudum, S. A., Lavanya, S., 10.1016/j.disc.2011.02.011, Discrete Math. 311 (2011), 866-871. (2011) Zbl1223.05020MR2781631DOI10.1016/j.disc.2011.02.011
- Choudum, S. A., Raman, I., 10.1007/s12190-008-0155-z, J. Appl. Math. Comput. 30 (2009), 39-52. (2009) Zbl1193.68187MR2496600DOI10.1007/s12190-008-0155-z
- Dvořák, T., 10.1016/j.dam.2006.09.003, Discrete Appl. Math. 155 (2007), 506-514. (2007) Zbl1111.05023MR2296871DOI10.1016/j.dam.2006.09.003
- Firsov, V. V., 10.1007/BF01074705, Kibernetika 1965 Russian (1965), 95-96 Cybernetics 1 (1965), 112-113. (1965) MR0210614DOI10.1007/BF01074705
- Harary, F., Lewinter, M., Widulski, W., On two-legged caterpillars which span hypercubes, Congr. Numer. 66 (1988), 103-108. (1988) Zbl0692.05023MR0992892
- Havel, I., On Hamiltonian circuits and spanning trees of hypercubes, Čas. Pěst. Mat. 109 (1984), 135-152. (1984) Zbl0544.05057MR0744871
- Havel, I., Liebl, P., Embedding the dichotomic tree into the -cube, Čas. Pěst. Mat. 97 Czech (1972), 201-205. (1972) Zbl0229.05109MR0306025
- Havel, I., Morávek, J., -valuations of graphs, Czech. Math. J. 22 (1972), 338-351. (1972) Zbl0247.05148MR0294159
- Kobeissi, M., Mollard, M., 10.1016/S0012-365X(01)00086-3, Discrete Math. 244 (2002), 231-239. (2002) Zbl0992.05032MR1844035DOI10.1016/S0012-365X(01)00086-3
- Nebeský, L., On cubes and dichotomic trees, Čas. Pěst. Mat. 99 (1974), 164-167. (1974) Zbl0277.05101MR0354425
- Nekri, M., Berrachedi, A., 10.1051/ro:2004027, RAIRO, Oper. Res. 38 (2004), 295-303. (2004) Zbl1114.05023MR2178082DOI10.1051/ro:2004027
- Wagner, A., Corneil, D. G., 10.1137/0219038, SIAM J. Comput. 19 (1990), 570-590. (1990) Zbl0698.68054MR1041546DOI10.1137/0219038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.