Various kinds of sensitive singular perturbations

Nicolas Meunier[1]; Jacqueline Sanchez-Hubert[2]; Évariste Sanchez-Palencia[3]

  • [1] MAP5 Université René Descartes 45 rue des Saints Pères 75006 Paris France
  • [2] Laboratoire de Mécanique Université de Caen Département de Mathématiques 4 boulevard Maréchal Juin 14032 Caen France
  • [3] Laboratoire de Modélisation en Mécanique Université Pierre et Marie Curie (Paris VI) 4 place Jussieu 75252 Paris France

Annales mathématiques Blaise Pascal (2007)

  • Volume: 14, Issue: 2, page 199-242
  • ISSN: 1259-1734

Abstract

top
We consider variational problems of P. D. E. depending on a small parameter ε when the limit process ε 0 implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first time). For each one we prove the sensitive character and we give a formal asymptotics for the behavior ε 0 .

How to cite

top

Meunier, Nicolas, Sanchez-Hubert, Jacqueline, and Sanchez-Palencia, Évariste. "Various kinds of sensitive singular perturbations." Annales mathématiques Blaise Pascal 14.2 (2007): 199-242. <http://eudml.org/doc/10546>.

@article{Meunier2007,
abstract = {We consider variational problems of P. D. E. depending on a small parameter $\varepsilon $ when the limit process $\varepsilon \downarrow 0$ implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first time). For each one we prove the sensitive character and we give a formal asymptotics for the behavior $\varepsilon \downarrow 0$.},
affiliation = {MAP5 Université René Descartes 45 rue des Saints Pères 75006 Paris France; Laboratoire de Mécanique Université de Caen Département de Mathématiques 4 boulevard Maréchal Juin 14032 Caen France; Laboratoire de Modélisation en Mécanique Université Pierre et Marie Curie (Paris VI) 4 place Jussieu 75252 Paris France},
author = {Meunier, Nicolas, Sanchez-Hubert, Jacqueline, Sanchez-Palencia, Évariste},
journal = {Annales mathématiques Blaise Pascal},
keywords = {highly pathological asymptotic behavior; analytical functionals; complexification},
language = {eng},
month = {7},
number = {2},
pages = {199-242},
publisher = {Annales mathématiques Blaise Pascal},
title = {Various kinds of sensitive singular perturbations},
url = {http://eudml.org/doc/10546},
volume = {14},
year = {2007},
}

TY - JOUR
AU - Meunier, Nicolas
AU - Sanchez-Hubert, Jacqueline
AU - Sanchez-Palencia, Évariste
TI - Various kinds of sensitive singular perturbations
JO - Annales mathématiques Blaise Pascal
DA - 2007/7//
PB - Annales mathématiques Blaise Pascal
VL - 14
IS - 2
SP - 199
EP - 242
AB - We consider variational problems of P. D. E. depending on a small parameter $\varepsilon $ when the limit process $\varepsilon \downarrow 0$ implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first time). For each one we prove the sensitive character and we give a formal asymptotics for the behavior $\varepsilon \downarrow 0$.
LA - eng
KW - highly pathological asymptotic behavior; analytical functionals; complexification
UR - http://eudml.org/doc/10546
ER -

References

top
  1. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92 Zbl0123.28706MR162050
  2. I. Babuska, M. Suri, On locking and robustness in the finite element method, SIAM J. Num. Anal. 29 (1992), 1261-1293 Zbl0763.65085MR1182731
  3. D. Caillerie, Étude générale d’un type de problèmes raides et de perturbation singulière, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 835-840 Zbl0864.47004
  4. R. Courant, D. Hilbert, Methods of mathematical physics. Vol. II, (1989), John Wiley & Sons Inc., New York Zbl0729.35001MR1013360
  5. J. W. De Roever, Analytic representations and Fourier transforms of analytic functionals in Z carried by the real space, SIAM J. Math. Anal. 9 (1978), 996-1019 Zbl0406.46033MR512506
  6. Y. V. Egorov, B.-W. Schulze, Pseudo-differential operators, singularities, applications, 93 (1997), Birkhäuser Verlag, Basel Zbl0877.35141MR1443430
  7. A. Erdélyi, Asymptotic expansions, (1956), Dover Publications Inc., New York Zbl0070.29002MR78494
  8. P. Gerard, E. Sanchez-Palencia, Sensitivity phenomena for certain thin elastic shells with edges, Math. Methods Appl. Sci. 23 (2000), 379-399 Zbl0989.74047MR1740321
  9. S. G. Gindikin, L. R. Volevich, The Cauchy problem, Partial differential equations, 3 (Russian) (1988), 5-98, 220, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow Zbl0738.35002MR1133456
  10. I. M. Guelfand, G. E. Chilov, Les distributions, (1962), Dunod, Paris 
  11. D. Huet, Phénomènes de perturbation singulière dans les problèmes aux limites, Ann. Inst. Fourier. Grenoble 10 (1960), 61-150 Zbl0128.32904MR118968
  12. A. I. Komech, Linear partial differential equations with constant coefficients, Partial differential equations, II 31 (1994), 121-255, Springer, Berlin Zbl0805.35001MR1364201
  13. J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, (1973), Springer-Verlag, Berlin Zbl0268.49001MR600331
  14. J.-L. Lions, E. Sanchez-Palencia, Problèmes sensitifs et coques élastiques minces, Partial differential equations and functional analysis 22 (1996), 207-220, Birkhäuser Boston, Boston, MA Zbl0857.35033MR1399133
  15. N. Meunier, E. Sanchez-Palencia, Sensitive versus classical perturbation problem via Fourier transform, Math. Models Methods Appl. Sci. (2007 (to appear)) Zbl1246.35026MR2271599
  16. J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and coupling of continuous systems, (1989), Springer-Verlag, Berlin Zbl0698.70003MR996423
  17. J. Sanchez-Hubert, E. Sanchez-Palencia, Coques élastiques minces, (1997), Masson, Paris Zbl0881.73001
  18. J. Sanchez-Hubert, E. Sanchez-Palencia, Singular perturbations with non-smooth limit and finite element approximation of layers for model problems of shells, Partiall Diff. Eq. in Micostructures (2001), 207-226, F. Ali Mehmet, J. Von Bellow and S. Nicaise ed., Marcel Dekker Zbl1079.35010MR1824574
  19. E. Sanchez-Palencia, Asymptotic and spectral properties of a class of singular-stiff problems, J. Math. Pures Appl. (9) 71 (1992), 379-406 Zbl0833.47011MR1191581
  20. E. Sanchez-Palencia, C. De Souza, Complexification phenomena in certain singular perturbations, Fluid Mechanics (2004), 363-379, F. J. Higuera, J. Jimenez, J. M. Vegan, ed., CIMNE, Barcelona 
  21. E. Sanchez-Palencia, C. De Souza, Complexification phenomenon in an example of sensitive singular perturbation, C. R. Acad. Sci. Paris Sér. II. Méc. 332 (2004), 605-612 Zbl1239.35012
  22. E. Sanchez-Palencia, C. De Souza, Complexification in singular perturbations and their approximation, Int. J. Multiscale Comput. Eng. 3 (2006), 481-498 
  23. L. Schwartz, Théorie des distributions. Tome I, (1957), Hermann & Cie., Paris Zbl0078.11003MR35918
  24. V. I. Smirnov, A course of higher mathematics. Vol. III. Part one. Linear algebra, (1964), Pergamon Press, Oxford Zbl0121.25904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.