Constant term in Harish-Chandra’s limit formula
- [1] Department of Geotechnical Engineering University of Zagreb Hallerova aleja 7 42000 Varaždin Croatia
Annales mathématiques Blaise Pascal (2008)
- Volume: 15, Issue: 2, page 153-168
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topBožičević, Mladen. "Constant term in Harish-Chandra’s limit formula." Annales mathématiques Blaise Pascal 15.2 (2008): 153-168. <http://eudml.org/doc/10558>.
@article{Božičević2008,
abstract = {Let $G_\mathbb\{R\}$ be a real form of a complex semisimple Lie group $G$. Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of $G$. We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open $G_\mathbb\{R\}$-orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.},
affiliation = {Department of Geotechnical Engineering University of Zagreb Hallerova aleja 7 42000 Varaždin Croatia},
author = {Božičević, Mladen},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Flag variety; equivariant sheaf; characteristic cycle; coadjoint orbit; Liouville measure; flag variety},
language = {eng},
month = {7},
number = {2},
pages = {153-168},
publisher = {Annales mathématiques Blaise Pascal},
title = {Constant term in Harish-Chandra’s limit formula},
url = {http://eudml.org/doc/10558},
volume = {15},
year = {2008},
}
TY - JOUR
AU - Božičević, Mladen
TI - Constant term in Harish-Chandra’s limit formula
JO - Annales mathématiques Blaise Pascal
DA - 2008/7//
PB - Annales mathématiques Blaise Pascal
VL - 15
IS - 2
SP - 153
EP - 168
AB - Let $G_\mathbb{R}$ be a real form of a complex semisimple Lie group $G$. Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of $G$. We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open $G_\mathbb{R}$-orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.
LA - eng
KW - Flag variety; equivariant sheaf; characteristic cycle; coadjoint orbit; Liouville measure; flag variety
UR - http://eudml.org/doc/10558
ER -
References
top- D. Barbasch, D. Vogan, Weyl group representations and nilpotent orbits, Representations of Reductive Groups, Progr. Math. 40 (1982), 21-32, TrombiP.P. Zbl0537.22013MR733804
- J. Bernstein, V. Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
- M. Božičević, Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier 58 (2008), 1213-1232 Zbl1153.22012MR2427959
- Harish-Chandra, Fourier transform on a semisimple Lie algebra II, Amer. J. Math. 79 (1957), 733-760 Zbl0080.10201MR96138
- M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, (1990), Springer-Verlag, Berlin Zbl0709.18001MR1074006
- M. Libine, A localization argument for characters of reductive Lie groups, J. Funct. Anal. 203 (2003), 197-236 Zbl1025.22012MR1996871
- T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357 Zbl0396.53025MR527548
- W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92 (1990), 263-287, ConnesA.A. Zbl0744.22012MR1103593
- W. Rossmann, Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math. 121 (1995), 531-578 Zbl0861.22008MR1353308
- W. Schmid, Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups, Progr. Math. 101 (1991), 235-275, BarkerW.W. Zbl0751.22003MR1168487
- W. Schmid, K. Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996), 451-502 Zbl0851.32011MR1369425
- W. Schmid, K. Vilonen, Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc. 11 (1998), 799-867 Zbl0976.22010MR1612634
- V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Math. 102, (1984), Springer-Verlag, New York Zbl0955.22500MR746308
- M. Vergne, Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. (4) 23 (1990), 543-562 Zbl0718.22009MR1072817
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.