Constant term in Harish-Chandra’s limit formula

Mladen Božičević[1]

  • [1] Department of Geotechnical Engineering University of Zagreb Hallerova aleja 7 42000 Varaždin Croatia

Annales mathématiques Blaise Pascal (2008)

  • Volume: 15, Issue: 2, page 153-168
  • ISSN: 1259-1734

Abstract

top
Let G be a real form of a complex semisimple Lie group G . Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of G . We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open G -orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.

How to cite

top

Božičević, Mladen. "Constant term in Harish-Chandra’s limit formula." Annales mathématiques Blaise Pascal 15.2 (2008): 153-168. <http://eudml.org/doc/10558>.

@article{Božičević2008,
abstract = {Let $G_\mathbb\{R\}$ be a real form of a complex semisimple Lie group $G$. Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of $G$. We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open $G_\mathbb\{R\}$-orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.},
affiliation = {Department of Geotechnical Engineering University of Zagreb Hallerova aleja 7 42000 Varaždin Croatia},
author = {Božičević, Mladen},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Flag variety; equivariant sheaf; characteristic cycle; coadjoint orbit; Liouville measure; flag variety},
language = {eng},
month = {7},
number = {2},
pages = {153-168},
publisher = {Annales mathématiques Blaise Pascal},
title = {Constant term in Harish-Chandra’s limit formula},
url = {http://eudml.org/doc/10558},
volume = {15},
year = {2008},
}

TY - JOUR
AU - Božičević, Mladen
TI - Constant term in Harish-Chandra’s limit formula
JO - Annales mathématiques Blaise Pascal
DA - 2008/7//
PB - Annales mathématiques Blaise Pascal
VL - 15
IS - 2
SP - 153
EP - 168
AB - Let $G_\mathbb{R}$ be a real form of a complex semisimple Lie group $G$. Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of $G$. We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open $G_\mathbb{R}$-orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.
LA - eng
KW - Flag variety; equivariant sheaf; characteristic cycle; coadjoint orbit; Liouville measure; flag variety
UR - http://eudml.org/doc/10558
ER -

References

top
  1. D. Barbasch, D. Vogan, Weyl group representations and nilpotent orbits, Representations of Reductive Groups, Progr. Math. 40 (1982), 21-32, TrombiP.P. Zbl0537.22013MR733804
  2. J. Bernstein, V. Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
  3. M. Božičević, Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier 58 (2008), 1213-1232 Zbl1153.22012MR2427959
  4. Harish-Chandra, Fourier transform on a semisimple Lie algebra II, Amer. J. Math. 79 (1957), 733-760 Zbl0080.10201MR96138
  5. M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, (1990), Springer-Verlag, Berlin Zbl0709.18001MR1074006
  6. M. Libine, A localization argument for characters of reductive Lie groups, J. Funct. Anal. 203 (2003), 197-236 Zbl1025.22012MR1996871
  7. T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357 Zbl0396.53025MR527548
  8. W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92 (1990), 263-287, ConnesA.A. Zbl0744.22012MR1103593
  9. W. Rossmann, Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math. 121 (1995), 531-578 Zbl0861.22008MR1353308
  10. W. Schmid, Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups, Progr. Math. 101 (1991), 235-275, BarkerW.W. Zbl0751.22003MR1168487
  11. W. Schmid, K. Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996), 451-502 Zbl0851.32011MR1369425
  12. W. Schmid, K. Vilonen, Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc. 11 (1998), 799-867 Zbl0976.22010MR1612634
  13. V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Math. 102, (1984), Springer-Verlag, New York Zbl0955.22500MR746308
  14. M. Vergne, Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. (4) 23 (1990), 543-562 Zbl0718.22009MR1072817

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.