Polynômes de Joseph et représentation de Springer

Michèle Vergne

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 4, page 543-562
  • ISSN: 0012-9593

How to cite

top

Vergne, Michèle. "Polynômes de Joseph et représentation de Springer." Annales scientifiques de l'École Normale Supérieure 23.4 (1990): 543-562. <http://eudml.org/doc/82281>.

@article{Vergne1990,
author = {Vergne, Michèle},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex connected semisimple Lie group; Lie algebra; Borel subalgebras; proportionality; Joseph and Springer polynomials},
language = {fre},
number = {4},
pages = {543-562},
publisher = {Elsevier},
title = {Polynômes de Joseph et représentation de Springer},
url = {http://eudml.org/doc/82281},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Vergne, Michèle
TI - Polynômes de Joseph et représentation de Springer
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 4
SP - 543
EP - 562
LA - fre
KW - complex connected semisimple Lie group; Lie algebra; Borel subalgebras; proportionality; Joseph and Springer polynomials
UR - http://eudml.org/doc/82281
ER -

References

top
  1. [1] N. BERLINE et M. VERGNE, The equivariant index and Kirillov character formula (Am. J. Math., vol. 107, 1985, p. 1159-1190). Zbl0604.58046MR87a:58143
  2. [2] N. BERLINE, E. GETZLER et M. VERGNE, Heat kernels and Dirac operators, (à paraître). Zbl1037.58015
  3. [3] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts (Ann. Math., vol. 57, 1953, p. 115-207). Zbl0052.40001MR14,490e
  4. [4] W. BORHO, J. L. BRYLINSKI and R. MACPHERSON, Springer's Weyl group representations through characteristic classes of cone bundles, (Math. Ann., vol. 278, 1987, p. 273-289). Zbl0624.14015MR89g:17010
  5. [5] H. CARTAN, La transgression dans un groupe de Lie et dans un espace fibré principal. Dans "Colloque de Topologie" (C.B.R.M., Bruxelles, 1950, p. 57-71). Zbl0045.30701MR13,107f
  6. [6] M. DUFLO et M. VERGNE, Cohomologie équivariante et méthode des orbites (à paraître, “The orbit Method in Representation theory” Progress in Mathematics, Birkhaüser-Boston). 
  7. [7] V. GINSBURG, Intégrales sur les orbites nilpotentes et représentations de groupes de Weyl (C.R. Acad. Sci., Paris, vol. 296, 1983, p. 249-252). Zbl0544.22009MR85b:22019
  8. [8] V. GINSBURG, g-modules, Springer's representations and bivariant Chern classes (Adv. Math., vol. 59, 1986, p. 1-48. Zbl0601.22008MR87k:17014
  9. [9] R. HOTTA, On Joseph's construction of Weyl group representations (Tohoku Math. J., vol. 36, 1984, p. 49-74). Zbl0545.20029MR86h:20061
  10. [10] M. KASHIWARA et T. MONTEIRO-FERNANDES, Involutivité des variétés microcaractéristiques (Bull. Soc. Math. France, vol. 114, 1986, p. 393-402). Zbl0619.35009MR88c:58061
  11. [11] R. HOTTA et M. KASHIWARA, The invariant holonomic system on a semisimple Lie algebra (Inventiones Mathematicae, vol. 75, 1984, p. 327-358). Zbl0538.22013MR87i:22041
  12. [12] A. JOSEPH, On the variety of a highest weight module (J. Alg., vol. 88, 1984, p. 238-278). Zbl0539.17006MR85j:17014
  13. [13] A. JOSEPH, On the characteristic polynomials of orbital varieties (Ann. Scient. Ec. Norm. Sup. (à paraître)). Zbl0695.17003
  14. [14] M. KASHIWARA et T. MONTEIRO-FERNANDES, Involutivité des variétés microcaractéristiques (Bull. Soc. Math., France, vol. 114, 1986, p. 393-402). Zbl0619.35009MR88c:58061
  15. [15] V. MATHAI et D. QUILLEN, Superconnections, Thom classes and equivariant differential forms (Topology, vol. 25, 1986, p. 85-110). Zbl0592.55015MR87k:58006
  16. [16] W. ROSSMANN, Invariant eigendistributions on a complex Lie algebra and homology classes on the conormal varieties I, II (preprint 1986), à paraître dans J. Funct. Anal. Zbl0755.22005
  17. [17] W. ROSSMANN, Equivariant multiplicities on complex varieties. Dans Orbites unipotentes et Représentations III. Astérisque, (à paraître). Zbl0691.32004
  18. [18] N. SPALTENSTEIN, On the fixed point set of a unipotent element on the variety of Borel subgroups (Topology, vol. 16, 1977, p. 203-204). Zbl0445.20021MR56 #5735
  19. [19] T. A. SPRINGER, Trigonometric sums, Green functions of finite groups and representations of Weyl group (Invent. Mathematicae, vol. 36, 1976, p. 173-207). Zbl0374.20054MR56 #491
  20. [20] T. A. SPRINGER, A construction of representations of Weyl groups (Invent. Mathematicae, vol. 44, 1978, p. 279-293). Zbl0376.17002MR58 #11154
  21. [21] R. STEINBERG, Conjugacy classes in algebraic groups (Lect. Notes Math., vol. 366, (Springer-Verlag), 1974. Zbl0281.20037MR50 #4766

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.