On Commutative Trivial extensions

Farid Kourki[1]

  • [1] Département de Mathématiques et Informatique Université Abdelmalek Essaâdi Faculté des Sciences, B.P. 2121 Tétouan, Maroc

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 1, page 139-150
  • ISSN: 1259-1734

Abstract

top
We characterize semiGoldie, finitely cogenerated, mininjective and quasi-Frobenius trivial extensions. As application, we obtain that every nœtherian ring can be embedded in a quasi-Frobenius Ring.

How to cite

top

Kourki, Farid. "Sur les Extensions Triviales Commutatives." Annales mathématiques Blaise Pascal 16.1 (2009): 139-150. <http://eudml.org/doc/10566>.

@article{Kourki2009,
abstract = {Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.},
affiliation = {Département de Mathématiques et Informatique Université Abdelmalek Essaâdi Faculté des Sciences, B.P. 2121 Tétouan, Maroc},
author = {Kourki, Farid},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Trivial extensions; SemiGoldie; Mininjective; Quasi-Frobenius},
language = {fre},
month = {1},
number = {1},
pages = {139-150},
publisher = {Annales mathématiques Blaise Pascal},
title = {Sur les Extensions Triviales Commutatives},
url = {http://eudml.org/doc/10566},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Kourki, Farid
TI - Sur les Extensions Triviales Commutatives
JO - Annales mathématiques Blaise Pascal
DA - 2009/1//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 1
SP - 139
EP - 150
AB - Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.
LA - fre
KW - Trivial extensions; SemiGoldie; Mininjective; Quasi-Frobenius
UR - http://eudml.org/doc/10566
ER -

References

top
  1. N. Bourbaki, Algèbre commutative, Chapitres 1 et 2, (1985), Masson, Paris 
  2. C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1994), 1867-1892 Zbl0729.16015MR1121111
  3. S. Glaz, Commutative coherent rings, (1989), Lecture Notes in Math., Springer–Verlag Zbl0745.13004MR999133
  4. K.R. Goodearl, Ring Theory : Nonsingular Rings and Modules, (1976), Marcel Dekker, New York Zbl0336.16001MR429962
  5. J.A. Huckaba, Commutative rings with zero divisors, (1988), Marcel Dekker, NewYork-Basel Zbl0637.13001MR938741
  6. F. Kasch, Modules and rings, (1982), Academic Press, London Zbl0523.16001MR667346
  7. T.Y. Lam, Lectures on modules and rings, (1999), Graduate Texts in Math., NewYork-Basel Zbl0911.16001MR1653294
  8. W.K. Nicholson, M.F. Yousif, Mininjective rings, J. Algebra 187 (1997), 548-578 Zbl0879.16002MR1430998
  9. P. Vamos, The dual of the notion of ’finitely generated’, J. London Math. Soc. 43 (1968), 643-646 Zbl0164.04003MR248171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.