On Commutative Trivial extensions
Farid Kourki[1]
- [1] Département de Mathématiques et Informatique Université Abdelmalek Essaâdi Faculté des Sciences, B.P. 2121 Tétouan, Maroc
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 1, page 139-150
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topKourki, Farid. "Sur les Extensions Triviales Commutatives." Annales mathématiques Blaise Pascal 16.1 (2009): 139-150. <http://eudml.org/doc/10566>.
@article{Kourki2009,
abstract = {Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.},
affiliation = {Département de Mathématiques et Informatique Université Abdelmalek Essaâdi Faculté des Sciences, B.P. 2121 Tétouan, Maroc},
author = {Kourki, Farid},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Trivial extensions; SemiGoldie; Mininjective; Quasi-Frobenius},
language = {fre},
month = {1},
number = {1},
pages = {139-150},
publisher = {Annales mathématiques Blaise Pascal},
title = {Sur les Extensions Triviales Commutatives},
url = {http://eudml.org/doc/10566},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Kourki, Farid
TI - Sur les Extensions Triviales Commutatives
JO - Annales mathématiques Blaise Pascal
DA - 2009/1//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 1
SP - 139
EP - 150
AB - Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.
LA - fre
KW - Trivial extensions; SemiGoldie; Mininjective; Quasi-Frobenius
UR - http://eudml.org/doc/10566
ER -
References
top- N. Bourbaki, Algèbre commutative, Chapitres 1 et 2, (1985), Masson, Paris
- C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1994), 1867-1892 Zbl0729.16015MR1121111
- S. Glaz, Commutative coherent rings, (1989), Lecture Notes in Math., Springer–Verlag Zbl0745.13004MR999133
- K.R. Goodearl, Ring Theory : Nonsingular Rings and Modules, (1976), Marcel Dekker, New York Zbl0336.16001MR429962
- J.A. Huckaba, Commutative rings with zero divisors, (1988), Marcel Dekker, NewYork-Basel Zbl0637.13001MR938741
- F. Kasch, Modules and rings, (1982), Academic Press, London Zbl0523.16001MR667346
- T.Y. Lam, Lectures on modules and rings, (1999), Graduate Texts in Math., NewYork-Basel Zbl0911.16001MR1653294
- W.K. Nicholson, M.F. Yousif, Mininjective rings, J. Algebra 187 (1997), 548-578 Zbl0879.16002MR1430998
- P. Vamos, The dual of the notion of ’finitely generated’, J. London Math. Soc. 43 (1968), 643-646 Zbl0164.04003MR248171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.