A Cancellation Theorem for Artinian Local Algebras.
Let be a commutative Noetherian ring and an ideal of . We introduce the concept of -weakly Laskerian -modules, and we show that if is an -weakly Laskerian -module and is a non-negative integer such that is -weakly Laskerian for all and all , then for any -weakly Laskerian submodule of , the -module is -weakly Laskerian. In particular, the set of associated primes of is finite. As a consequence, it follows that if is a finitely generated -module and is an -weakly...
The aim of this note is to give an alternative proof of uniqueness for the decomposition of a finitely generated torsion module over a P.I.D. (= principal ideal domain) as a direct sum of indecomposable submodules.Our proof tries to mimic as far as we can the standard procedures used when dealing with vector spaces.For the sake of completeness we also include a proof of the existence theorem.
Let R be a subring of the rationals. We want to investigate self splitting R-modules G, that is, such that . For simplicity we will call such modules splitters (see [10]). Also other names like stones are used (see a dictionary in Ringel’s paper [8]). Our investigation continues [5]. In [5] we answered an open problem by constructing a large class of splitters. Classical splitters are free modules and torsion-free, algebraically compact ones. In [5] we concentrated on splitters which are larger...
Let R be a subring of the rational numbers ℚ. We recall from [3] that an R-module G is a splitter if . In this note we correct the statement of Main Theorem 1.5 in [3] and discuss the existence of non-free splitters of cardinality ℵ₁ under the negation of the special continuum hypothesis CH.
A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.