L p , q -cohomology of warped cylinders

Yaroslav Kopylov[1]

  • [1] Sobolev Institute of Mathematics Pr. Akademika Koptyuga 4 630090, Novosibirsk RUSSIA

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 2, page 321-338
  • ISSN: 1259-1734

Abstract

top
We extend some results by Gol dshtein, Kuz minov, and Shvedov about the L p -cohomology of warped cylinders to L p , q -cohomology for p q . As an application, we establish some sufficient conditions for the nontriviality of the L p , q -torsion of a surface of revolution.

How to cite

top

Kopylov, Yaroslav. "$L_{p,q}$-cohomology of warped cylinders." Annales mathématiques Blaise Pascal 16.2 (2009): 321-338. <http://eudml.org/doc/10583>.

@article{Kopylov2009,
abstract = {We extend some results by Gol$^\{\prime\}$dshtein, Kuz$^\{\prime\}$minov, and Shvedov about the $L_p$-cohomology of warped cylinders to $L_\{p,q\}$-cohomology for $p\ne q$. As an application, we establish some sufficient conditions for the nontriviality of the $L_\{p,q\}$-torsion of a surface of revolution.},
affiliation = {Sobolev Institute of Mathematics Pr. Akademika Koptyuga 4 630090, Novosibirsk RUSSIA},
author = {Kopylov, Yaroslav},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Differential form; $L_\{p,q\}$-cohomology; $L_\{p,q\}$-torsion; warped cylinder; differential form, -cohomology, -torsion, warped cylinder},
language = {eng},
month = {7},
number = {2},
pages = {321-338},
publisher = {Annales mathématiques Blaise Pascal},
title = {$L_\{p,q\}$-cohomology of warped cylinders},
url = {http://eudml.org/doc/10583},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Kopylov, Yaroslav
TI - $L_{p,q}$-cohomology of warped cylinders
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 321
EP - 338
AB - We extend some results by Gol$^{\prime}$dshtein, Kuz$^{\prime}$minov, and Shvedov about the $L_p$-cohomology of warped cylinders to $L_{p,q}$-cohomology for $p\ne q$. As an application, we establish some sufficient conditions for the nontriviality of the $L_{p,q}$-torsion of a surface of revolution.
LA - eng
KW - Differential form; $L_{p,q}$-cohomology; $L_{p,q}$-torsion; warped cylinder; differential form, -cohomology, -torsion, warped cylinder
UR - http://eudml.org/doc/10583
ER -

References

top
  1. E. N. Batuev, V. D. Stepanov, Weighted inequalities of Hardy type, Siberian Math. J. 30 (1989), 8-16 Zbl0729.42007MR995015
  2. J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace Operator 36 (1980), 91-146, Amer. Math. Soc., Providence Zbl0461.58002MR573430
  3. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, Differential forms on Lipschitz manifolds, Siberian Math. J. 23 (1982), 151-161 Zbl0522.58001
  4. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, Integration of differential forms of the classes W p , q * , Siberian Math. J. 23 (1982), 640-653 Zbl0522.58002
  5. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, Wolfe’s theorem for differential forms of classes W p , q * , Siberian Math. J. 24 (1983), 672-681 Zbl0547.58003
  6. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, A property of the de Rham regularization operator, Siberian Math. J. 25 (1984), 251-257 Zbl0602.58002
  7. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, The integral representation of the integral of a differential form, Functional Analysis and Mathematical Physics, Collect. Sci. Works (1985), 53-87, Inst. Mat. Sib. Otd. Akad Nauk SSSR, Novosibirsk Zbl0583.58002
  8. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, Normal and compact solvability of linear operators, Siberian Math. J. 30 (1989), 704-712 Zbl0706.47005MR1025289
  9. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, L p -cohomology of warped cylinders, Siberian Math. J. 31 (1990), 919-925 Zbl0732.53029MR1097955
  10. V. M. Golʼdshtein, V. I. Kuzʼminov, I. A. Shvedov, Reduced L p -cohomology of warped cylinders, Siberian Math. J. 31 (1990), 716-727 Zbl0722.53034MR1088912
  11. V. M. Golʼdshtein, M. Troyanov, The L p q -cohomology of SOL, Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), 687-698 Zbl0962.53031MR1693577
  12. V. M. Golʼdshtein, M. Troyanov, Sobolev inequalities for differential forms and L q , p -cohomology, J. Geom. Anal. 16 (2006), 597-632 Zbl1105.58008MR2271946
  13. V. M. Golʼdshtein, M. Troyanov, A conformal de Rham complex, (2007) 
  14. V. M. Golʼdshtein, M. Troyanov, Distortion of mappings and L q , p -cohomology, Math. Z. (2009), DOI 10.1007/s00209-008-0463-x 
  15. V. M. Golʼdshtein, M. Troyanov, L q , p -cohomology of Riemannian manifolds with negative curvature, Sobolev spaces in mathematics. II 9 (2009), 199-208, Springer, New York Zbl1169.58003MR2484626
  16. Ya. A. Kopylov, Some properties of the operator of exterior derivation on surfaces of revolution and L p -cohomology, Complex Geometry of Groups 240 (1999), 247-257, Amer. Math. Soc., Providence, RI Zbl0953.58001MR1703564
  17. Ya. A. Kopylov, L p , q -cohomology and normal solvability, Arch. Math. 89 (2007), 87-96 Zbl1130.58003MR2322785
  18. Ya. A. Kopylov, V. I. Kuzʼminov, Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category, Siberian Adv. Math. 13 (2003), 72-80 Zbl1046.18010MR2028407
  19. V. I. Kuzʼminov, I. A. Shvedov, On normal solvability of the operator of exterior derivation on warped products, Siberian Math. J. 37 (1996), 276-287 Zbl0893.58004MR1425341
  20. V. I. Kuzʼminov, I. A. Shvedov, Homological aspects of the theory of Banach complexes, Siberian Math. J. 40 (1999), 754-763 Zbl0939.58001MR1721681
  21. V. G. Mazʼya, Sobolev Spaces, (1985), Springer-Verlag, New York Zbl0692.46023MR817985
  22. M. Troyanov, On the Hodge decomposition in n , (2007) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.