-valued differential forms on
The theory of variational bicomplexes is a natural geometrical setting for the calculus of variations on a fibred manifold. It is a well–established theory although not spread out very much among theoretical and mathematical physicists. Here, we present a new approach to infinite order variational bicomplexes based upon the finite order approach due to Krupka. In this approach the information related to the order of jets is lost, but we have a considerable simplification both in the exposition...
In this paper we present an approximation to the de Rham theorem for simplicial sets with any coefficients based, using simplicial techniques, on Poincaré's lemma and q-extendability.
Nous démontrons des théorèmes de dualité de Poincaré et de de Rham pour la cohomologie basique et l’homologie des courants transverses invariants d’un feuilletage riemannien.
We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multicomplexes and a new kind of a Hodge degeneration condition.