Existence of strong solutions for nonisothermal Korteweg system

Boris Haspot[1]

  • [1] Université Paris-Est Laboratoire d’Analyse et de Mathématiques Appliquées, UMR 8050 61 avenue du Général de Gaulle 94 010 CRETEIL Cedex FRANCE

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 2, page 431-481
  • ISSN: 1259-1734

Abstract

top
This work is devoted to the study of the initial boundary value problem for a general non isothermal model of capillary fluids derived by J. E Dunn and J. Serrin (1985) in [9, 16], which can be used as a phase transition model.We distinguish two cases, when the physical coefficients depend only on the density, and the general case. In the first case we can work in critical scaling spaces, and we prove global existence of solution and uniqueness for data close to a stable equilibrium. For general data, existence and uniqueness is stated on a short time interval.In the general case with physical coefficients depending on density and on temperature, additional regularity is required to control the temperature in L norm. We prove global existence of solution close to a stable equilibrium and local in time existence of solution with more general data. Uniqueness is also obtained.

How to cite

top

Haspot, Boris. "Existence of strong solutions for nonisothermal Korteweg system." Annales mathématiques Blaise Pascal 16.2 (2009): 431-481. <http://eudml.org/doc/10587>.

@article{Haspot2009,
abstract = {This work is devoted to the study of the initial boundary value problem for a general non isothermal model of capillary fluids derived by J. E Dunn and J. Serrin (1985) in [9, 16], which can be used as a phase transition model.We distinguish two cases, when the physical coefficients depend only on the density, and the general case. In the first case we can work in critical scaling spaces, and we prove global existence of solution and uniqueness for data close to a stable equilibrium. For general data, existence and uniqueness is stated on a short time interval.In the general case with physical coefficients depending on density and on temperature, additional regularity is required to control the temperature in $L^\{\infty \}$ norm. We prove global existence of solution close to a stable equilibrium and local in time existence of solution with more general data. Uniqueness is also obtained.},
affiliation = {Université Paris-Est Laboratoire d’Analyse et de Mathématiques Appliquées, UMR 8050 61 avenue du Général de Gaulle 94 010 CRETEIL Cedex FRANCE},
author = {Haspot, Boris},
journal = {Annales mathématiques Blaise Pascal},
keywords = {PDE; Harmonic analysis; initial boundary value problem; general non-isothermal model of capillary fluids; phase transition model},
language = {eng},
month = {7},
number = {2},
pages = {431-481},
publisher = {Annales mathématiques Blaise Pascal},
title = {Existence of strong solutions for nonisothermal Korteweg system},
url = {http://eudml.org/doc/10587},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Haspot, Boris
TI - Existence of strong solutions for nonisothermal Korteweg system
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 431
EP - 481
AB - This work is devoted to the study of the initial boundary value problem for a general non isothermal model of capillary fluids derived by J. E Dunn and J. Serrin (1985) in [9, 16], which can be used as a phase transition model.We distinguish two cases, when the physical coefficients depend only on the density, and the general case. In the first case we can work in critical scaling spaces, and we prove global existence of solution and uniqueness for data close to a stable equilibrium. For general data, existence and uniqueness is stated on a short time interval.In the general case with physical coefficients depending on density and on temperature, additional regularity is required to control the temperature in $L^{\infty }$ norm. We prove global existence of solution close to a stable equilibrium and local in time existence of solution with more general data. Uniqueness is also obtained.
LA - eng
KW - PDE; Harmonic analysis; initial boundary value problem; general non-isothermal model of capillary fluids; phase transition model
UR - http://eudml.org/doc/10587
ER -

References

top
  1. D. M. Anderson, G. B. McFadden, A. A. Wheller, Diffuse-interface methods in fluid mech., In Annal review of fluid mechanics 30 (1998), 139-165 
  2. H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et estimation de Strichartz, Amer. J. Mathematics 121 (1999), 1337-1377 Zbl0952.35073MR1719798
  3. G. Bourdaud, Réalisations des espaces de Besov homogènes, Arkiv für Mathematik 26 (1998), 41-54 Zbl0661.46026MR948279
  4. J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys 28 (1998), 258-267 
  5. J.-Y. Chemin, About Navier-Stokes system, (1996) 
  6. J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, J. d’Analyse Math 77 (1999), 27-50 Zbl0938.35125MR1753481
  7. R. Danchin, Local Theory in critical Spaces for Compressible Viscous and Heat-Conductive Gases, Communication in Partial Differential Equations 26 (78) (2001), 1183-1233 Zbl1007.35071MR1855277
  8. R. Danchin, B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l’IHP, Analyse non linéaire 18 (2001), 97-133 Zbl1010.76075MR1810272
  9. J. E. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal 88(2) (1985), 95-133 Zbl0582.73004MR775366
  10. M. E. Gurtin, D. Poligone, J. Vinals, Two-phases binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci 6(6) (1996), 815-831 Zbl0857.76008MR1404829
  11. H. Hattori, D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations 9(4) (1996), 323-342 Zbl0881.35095MR1426082
  12. H. Hattori, D. Li, Global Solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl 198(1) (1996), 84-97 Zbl0858.35124MR1373528
  13. D. Jamet, O. Lebaigue, N. Coutris, J. M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput. Phys 169(2) (2001), 624-651 Zbl1047.76098MR1836527
  14. D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér II, 6 (1901), 1-24 Zbl32.0756.02
  15. Y. Meyer, Ondelettes et opérateurs, tome 3, (1991), Hermann, Paris Zbl0694.41037MR1085487
  16. J. S. Rowlinson, Translation of J. D. Van Der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Statist. Phys. 20(2) (1979), 197-244 MR523642
  17. C. Truedelland, W. Noll, The nonlinear field theories of mechanics, (1992), Springer-Verlag, Berlin Zbl0779.73004MR1215940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.