Page 1 Next

Displaying 1 – 20 of 193

Showing per page

2D-1D dimensional reduction in a toy model for magnetoelastic interactions

Mouhcine Tilioua (2011)

Applications of Mathematics

The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.

A convergence result for the Gradient Flow of ∫ |A| 2 in Riemannian Manifolds

Annibale Magni (2015)

Geometric Flows

We study the gradient flow of the L2−norm of the second fundamental form for smooth immersions of two-dimensional surfaces into compact Riemannian manifolds. By analogy with the results obtained in [10] and [11] for the Willmore flow, we prove lifespan estimates in terms of the L2−concentration of the second fundamental form of the initial data and we show the existence of blowup limits. Under special condition both on the initial data and on the target manifold, we prove a long time existence result...

A frictional contact problem with wear and damage for electro-viscoelastic materials

Mohamed Selmani, Lynda Selmani (2010)

Applications of Mathematics

We consider a quasistatic contact problem for an electro-viscoelastic body. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We present a weak formulation for the model and establish existence and uniqueness results. The proofs are based on classical results for elliptic variational...

A note on a critical problem with natural growth in the gradient

Boumediene Abdellaoui, Ireneo Peral (2006)

Journal of the European Mathematical Society

The paper analyzes the influence on the meaning of natural growth in the gradient of a perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian the natural problem becomes Δ u Λ N u | x | 2 = u + N 2 2 u | x | 2 x 2 | x | ( N 2 ) / 2 + λ f ( x ) in Ω , u = 0 on Ω , Λ N = ( ( N 2 ) / 2 ) 2 . This problem is a particular case of problem (2). Notice that ( N 2 ) / 2 is optimal as coefficient and exponent on the right hand side.

A quasi-variational inequality problem arising in the modeling of growing sandpiles

John W. Barrett, Leonid Prigozhin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...

A uniqueness result for the continuity equation in two dimensions

Giovanni Alberti, Stefano Bianchini, Gianluca Crippa (2014)

Journal of the European Mathematical Society

We characterize the autonomous, divergence-free vector fields b on the plane such that the Cauchy problem for the continuity equation t u + . ˙ ( b u ) = 0 admits a unique bounded solution (in the weak sense) for every bounded initial datum; the characterization is given in terms of a property of Sard type for the potential f associated to b . As a corollary we obtain uniqueness under the assumption that the curl of b is a measure. This result can be extended to certain non-autonomous vector fields b with bounded divergence....

An existence proof for the stationary compressible Stokes problem

A. Fettah, T. Gallouët, H. Lakehal (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.

Analytical results on a model for damaging in domains and interfaces

Elena Bonetti, Michel Frémond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...

Analytical results on a model for damaging in domains and interfaces*

Elena Bonetti, Michel Frémond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...

Currently displaying 1 – 20 of 193

Page 1 Next