Monge-Ampère Equations, Geodesics and Geometric Invariant Theory

D.H. Phong[1]; Jacob Sturm[2]

  • [1] Department of Mathematics Columbia University, New York, NY 10027
  • [2] Department of Mathematics Rutgers University, Newark, NJ 07102

Journées Équations aux dérivées partielles (2005)

  • page 1-15
  • ISSN: 0752-0360

Abstract

top
Existence and uniqueness theorems for weak solutions of a complex Monge-Ampère equation are established, extending the Bedford-Taylor pluripotential theory. As a consequence, using the Tian-Yau-Zelditch theorem, it is shown that geodesics in the space of Kähler potentials can be approximated by geodesics in the spaces of Bergman metrics. Motivation from Donaldson’s program on constant scalar curvature metrics and Yau’s strategy of approximating Kähler metrics by Bergman metrics is also discussed.

How to cite

top

Phong, D.H., and Sturm, Jacob. "Monge-Ampère Equations, Geodesics and Geometric Invariant Theory." Journées Équations aux dérivées partielles (2005): 1-15. <http://eudml.org/doc/10602>.

@article{Phong2005,
abstract = {Existence and uniqueness theorems for weak solutions of a complex Monge-Ampère equation are established, extending the Bedford-Taylor pluripotential theory. As a consequence, using the Tian-Yau-Zelditch theorem, it is shown that geodesics in the space of Kähler potentials can be approximated by geodesics in the spaces of Bergman metrics. Motivation from Donaldson’s program on constant scalar curvature metrics and Yau’s strategy of approximating Kähler metrics by Bergman metrics is also discussed.},
affiliation = {Department of Mathematics Columbia University, New York, NY 10027; Department of Mathematics Rutgers University, Newark, NJ 07102},
author = {Phong, D.H., Sturm, Jacob},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Monge-Ampère Equations, Geodesics and Geometric Invariant Theory},
url = {http://eudml.org/doc/10602},
year = {2005},
}

TY - JOUR
AU - Phong, D.H.
AU - Sturm, Jacob
TI - Monge-Ampère Equations, Geodesics and Geometric Invariant Theory
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 15
AB - Existence and uniqueness theorems for weak solutions of a complex Monge-Ampère equation are established, extending the Bedford-Taylor pluripotential theory. As a consequence, using the Tian-Yau-Zelditch theorem, it is shown that geodesics in the space of Kähler potentials can be approximated by geodesics in the spaces of Bergman metrics. Motivation from Donaldson’s program on constant scalar curvature metrics and Yau’s strategy of approximating Kähler metrics by Bergman metrics is also discussed.
LA - eng
UR - http://eudml.org/doc/10602
ER -

References

top
  1. Bedford, E. and B.A. Taylor, “The Dirichlet problem for a complex Monge-Ampère equation”, Inventiones Math. 37 (1976) 1-44. Zbl0315.31007MR445006
  2. Bedford, E. and B.A. Taylor, “A new capacity theory for plurisubharmonic functions”, Acta Math. 149 (1982) 1-40. Zbl0547.32012MR674165
  3. Blocki, Z., “The complex Monge-Ampère operator and pluripotential theory”, lecture notes available from the author’s website. 
  4. Boutet de Monvel, L. and J. Sjöstrand, “Sur la singularité des noyaux de Bergman et de Szegö” Journées: Equations aux Dérivées Partielles de Rennes (1975), 123-164. Asterisque, No. 34-35, Soc. Math. France, Paris, 1976. Zbl0344.32010MR590106
  5. Caffarelli, L., L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation”. Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. Zbl0598.35047MR739925
  6. Caffarelli, L., L. Nirenberg, L., J.J. Kohn, and J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equationsv”. Comm. Pure Appl. Math. 38 (1985), no. 2, 209–252. Zbl0598.35048MR780073
  7. Caffarelli, L., L. Nirenberg, and J. Spruck, “The Dirichlet problem for the degenerate Monge-Ampère equation”, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 19–27. Zbl0611.35029MR864651
  8. Catlin, D., “The Bergman kernel and a theorem of Tian”, Analysis and geometry in several complex variables (Katata, 1997), 1-23, Trends Math., Birkhäuser Boston, Boston, MA, 1999. Zbl0941.32002MR1699887
  9. Chen, X.X., “The space of Kähler metrics”, J. Differential Geom. 56 (2000), 189-234. Zbl1041.58003MR1863016
  10. Chen, X.X. and G. Tian, “Geometry of Kähler metrics and foliations by discs”, arXiv: math.DG / 0409433. 
  11. Demailly, J.P., “Complex analytic and algebraic geometry”, book available from the author’s website. 
  12. Donaldson, S.K., “Symmetric spaces, Kähler geometry, and Hamiltonian dynamics”, Amer. Math. Soc. Transl. 196 (1999) 13-33. Zbl0972.53025MR1736211
  13. Donaldson, S.K., “Scalar curvature and projective imbeddings II”, arXiv: math.DG / 0407534. 
  14. Donaldson, S.K., “Scalar curvature and projective embeddings. I”, J. Diff. Geometry 59 (2001) 479-522. Zbl1052.32017MR1916953
  15. Donaldson, S.K., “Scalar curvature and stability of toric varieties”, J. Diff. Geometry 62 (2002) 289-349. Zbl1074.53059MR1988506
  16. Fefferman, C., “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math. 26 (1974), 1–65. Zbl0289.32012MR350069
  17. Guan, B., “The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function”, Comm. Anal. Geom. 6 (1998), no. 4, 687–703. Zbl0923.31005MR1664889
  18. Guedj, V. and A. Zeriahi, “Intrinsic capacities on compact Kähler manifolds”, arXiv: math.CV / 0401302. Zbl1087.32020
  19. Lu, Z., “On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch”, Amer. J. Math. 122 (2000) 235-273. Zbl0972.53042MR1749048
  20. Mabuchi, T., “Some symplectic geometry on compact Kähler manifolds”, Osaka J. Math. 24 (1987) 227-252. Zbl0645.53038MR909015
  21. Mumford, D., J. Fogarty, and F. Kirwan, “Geometric invariant theory” Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34. Springer-Verlag, Berlin, 1994. Zbl0797.14004MR1304906
  22. Paul, S., “Geometric analysis of Chow Mumford stability”, Adv. Math. 182 (2004), no. 2, 333–356. Zbl1050.53061MR2032032
  23. Paul, S. and G. Tian, “Algebraic and analytic stability”, arXiv: math.DG/0405530. 
  24. Phong, D.H. and J. Sturm, “Stability, energy functionals, and Kähler-Einstein metrics”, Comm. Anal. Geometry 11 (2003) 563-597, arXiv: math.DG / 0203254. Zbl1098.32012MR2015757
  25. Phong, D.H. and J. Sturm, “The complex Monge-Ampère operator and geodesics in the space of Kähler metrics”, arXiv: math.DG/0504157. Zbl1120.32026
  26. Phong, D.H. and J. Sturm, “On stability and the convergence of the Kähler-Ricci flow”, arXiv: math.DG / 0412185. Zbl1125.53048MR2215459
  27. Semmes, S., “Complex Monge-Ampère and symplectic manifolds”, Amer. J. Math. 114 (1992) 495-550. Zbl0790.32017MR1165352
  28. Tian, G., “ On a set of polarized Kähler metrics on algebraic manifolds”, J. Diff. Geom. 32 (1990) 99-130. Zbl0706.53036MR1064867
  29. Tian, G., “Kähler-Einstein metrics with positive scalar curvature”, Inventiones Math. 130 (1997) 1-37. Zbl0892.53027MR1471884
  30. Yau, S.T., “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation I”, Comm. Pure Appl. Math. 31 (1978) 339-411. Zbl0369.53059MR480350
  31. Yau, S.T., “ Nonlinear analysis in geometry”, Enseign. Math. (2) 33 (1987), no. 1-2, 109–158. Zbl0631.53002MR896385
  32. Yau, S.T., “Open problems in geometry”, Proc. Symp. Pure Math. 54 (1993) 1-28. Zbl0984.53003MR1216573
  33. Zelditch, S., “The Szegö kernel and a theorem of Tian”, Int. Math. Res. Notices 6 (1998) 317-331. Zbl0922.58082MR1616718
  34. Zhang, S., “Heights and reductions of semi-stable varieties”, Compositio Math. 104 (1996) 77-105. Zbl0924.11055MR1420712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.