Derivation of the Zakharov equations
- [1] Indiana University, Bloomington, IN 47405
Journées Équations aux dérivées partielles (2005)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topHow to cite
topTexier, Benjamin. "Derivation of the Zakharov equations." Journées Équations aux dérivées partielles (2005): 1-13. <http://eudml.org/doc/10607>.
@article{Texier2005,
affiliation = {Indiana University, Bloomington, IN 47405},
author = {Texier, Benjamin},
journal = {Journées Équations aux dérivées partielles},
keywords = {Euler-Maxwell equations; pseudo-differential changes of variables; Zakharov equations; approximation solution; Sobolev estimates},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Derivation of the Zakharov equations},
url = {http://eudml.org/doc/10607},
year = {2005},
}
TY - JOUR
AU - Texier, Benjamin
TI - Derivation of the Zakharov equations
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
LA - eng
KW - Euler-Maxwell equations; pseudo-differential changes of variables; Zakharov equations; approximation solution; Sobolev estimates
UR - http://eudml.org/doc/10607
ER -
References
top- C. Cheverry, O. Guès, G. Métivier, Oscillations fortes sur un champ linéairement dégénéré, Ann. E.N.S., vol. 36, no. 3 (2003.), 691–745 Zbl1091.35039MR2032985
- T. Colin, G. Ebrard, G. Gallice, B. Texier, Justification of the Zakharov model from Klein-Gordon-waves systems, Comm. Partial Diff. Eq. 29 (2004), no. 9-10, 1365-1401. Zbl1063.35111MR2103840
- T. Colin, G. Métivier, in preparation.
- E. Grenier, Pseudo-differential estimates of singular perturbations, Comm. Pure and Applied Math., vol. 50 (1997), 821-865. Zbl0884.35183MR1459589
- J.-L. Joly, G. Métivier, J. Rauch, Transparent nonlinear geometric optics and Maxwell-Bloch equations, J. Diff. Eq., vol. 166 (2000), 175-250. Zbl1170.78311MR1779260
- D. Lannes, Sharp estimates for pseudo-differential operators with limited regularity and commutators, submitted. Zbl1099.35191
- F. Linares, A. Ponce, J. C. Saut, On a degenerate Zakharov system, Bull. Braz. Math. Soc. 36 (2005), no. 1, 1-23. Zbl1070.35087
- G. Métivier, K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., vol. 175, no. 826 (2005). Zbl1074.35066MR2130346
- T. Ozawa, Y. Tsutsumi, Existence and smoothing effect of solution for the Zakharov equation, Publ. Res. Inst. Math. Sci., vol. 28, no. 3 (1992), 329-361. Zbl0842.35116MR1184829
- S. Schochet, M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Physics, vol. 106 (1986), 569-580. Zbl0639.76054MR860310
- M. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics vol. 100, Birkhaüser Boston, 1991. Zbl0746.35062MR1121019
- B. Texier, WKB asymptotics for the Euler-Maxwell equations, Asymptotic Analysis 42 (2005), no. 3-4, 211-250. Zbl1116.35114MR2138794
- B. Texier, Derivation of the Zakharov equations, submitted. Zbl05146096
- S. Musher, A. Rubenchik, V. Zakharov , Hamiltonian approach to the description of nonlinear plasma phenomena, Phys. Reports, vol. 129 (1985), 285-366. MR824169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.