### A global description of solutions to nonlinear perturbations of the Wiener--Hopf integral equations.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell’s equations for the wave field coupled with a version of Bloch’s equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material....

This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material. ...

In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs. 17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math. 193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect...

In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs.17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math.193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect to...

Following the recent experimental realization of synthetic gauge potentials, Jean Dalibard addressed the question whether the adiabatic ansatz could be mathematically justified for a model of an atom in 2 internal states, shone by a quasi resonant laser beam. In this paper, we derive rigorously the asymptotic model guessed by the physicists, and show that this asymptotic analysis contains the information about the presence of vortices. Surprisingly, the main difficulties do not come from the nonlinear...

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.

In order to get the fusion of small capsules containing a deuterium-tritium nuclear fuel, the MegaJoule laser (LMJ) will focus a large number of laser beams inside a cylinder (Hohlraum) which contains the fusion capsule. In order to control this process we have to know as well as possible the electromagnetic field created by the laser beams on both Hohlraum’s apertures. This article describes a numerical tool which computes this electromagnetic field...