Geometric structure of magnetic walls
- [1] Université de Nantes Laboratoire de Mathématiques Jean Leray UFR Sciences et Techniques 2 rue de la Houssinière 44322 Nantes Cedex 3
Journées Équations aux dérivées partielles (2005)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topLecumberry, Myriam. "Geometric structure of magnetic walls." Journées Équations aux dérivées partielles (2005): 1-11. <http://eudml.org/doc/10608>.
@article{Lecumberry2005,
abstract = {After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.},
affiliation = {Université de Nantes Laboratoire de Mathématiques Jean Leray UFR Sciences et Techniques 2 rue de la Houssinière 44322 Nantes Cedex 3},
author = {Lecumberry, Myriam},
journal = {Journées Équations aux dérivées partielles},
keywords = {micromagnetism; Hamilton-Jacobi problem; rectifiability; silicon-iron crystal},
language = {eng},
month = {6},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Geometric structure of magnetic walls},
url = {http://eudml.org/doc/10608},
year = {2005},
}
TY - JOUR
AU - Lecumberry, Myriam
TI - Geometric structure of magnetic walls
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
AB - After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.
LA - eng
KW - micromagnetism; Hamilton-Jacobi problem; rectifiability; silicon-iron crystal
UR - http://eudml.org/doc/10608
ER -
References
top- L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. PDE 9 (1999) 4, 327-355. Zbl0960.49013MR1731470
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, (2000). Zbl0957.49001MR1857292
- L. Ambrosio, B. Kirchheim, M. Lecumberry and T. Rivière, On the rectifiability of defect measures arising in micromagnetic domains, Nonlinear problems in mathematical physics and related topics, II, 29-60, Int. Math. Ser. (N.Y.), 2. KluwerPlenum, New York, (2002). Zbl1055.49008MR1971988
- L. Ambrosio, M. Lecumberry and T. Riviere, A viscosity property of minimizing micromagnetic configurations, Comm. Pure Appl. Math.56 (2003), no 6, 681-688. Zbl1121.35309MR1959737
- C. De Lellis and F. Otto, Structure of entropy solutions: applications to variational problems, to appear in J. Europ. Math. Soc..
- C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional conservation laws, to appear in Arch. Ration. Mech. Anal. Zbl1036.35127
- C. De Lellis and T. Rivière, Concentration estimates for entropy measures, to appear in J. Math. Pures et Appl..
- A. Hubert and A. Schäfer, Magnetic domains: the analysis of magnetic microstructures, Springer, Berlin-New York, (1998).
- M. Lecumberry and T. Rivière, The rectifiability of shock waves for the solutions of genuinely non-linear scalar conservation laws in 1+1 D., Preprint (2002).
- T. Rivière, Parois et vortex en micromagnétisme, Journées “Equations aux dérivées partielles” (Forges-les-Eaux, 2002), Exp. no XIV. MR1968210
- T. Rivière and S. Serfaty, Limiting Domain Wall Energy for a Problem Related to Micromagnetics, Comm. Pure Appl. Math., 54, (2001), 294-338. Zbl1031.35142MR1809740
- T. Rivière and S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations28 (2003), no 1-2, 249-269. Zbl1094.35125MR1974456
- D. Serre, Systèmes de lois de conservation I, Diderot, (1996). Zbl0930.35002MR1459988
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.