Geometric structure of magnetic walls

Myriam Lecumberry[1]

  • [1] Université de Nantes Laboratoire de Mathématiques Jean Leray UFR Sciences et Techniques 2 rue de la Houssinière 44322 Nantes Cedex 3

Journées Équations aux dérivées partielles (2005)

  • page 1-11
  • ISSN: 0752-0360

Abstract

top
After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.

How to cite

top

Lecumberry, Myriam. "Geometric structure of magnetic walls." Journées Équations aux dérivées partielles (2005): 1-11. <http://eudml.org/doc/10608>.

@article{Lecumberry2005,
abstract = {After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.},
affiliation = {Université de Nantes Laboratoire de Mathématiques Jean Leray UFR Sciences et Techniques 2 rue de la Houssinière 44322 Nantes Cedex 3},
author = {Lecumberry, Myriam},
journal = {Journées Équations aux dérivées partielles},
keywords = {micromagnetism; Hamilton-Jacobi problem; rectifiability; silicon-iron crystal},
language = {eng},
month = {6},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Geometric structure of magnetic walls},
url = {http://eudml.org/doc/10608},
year = {2005},
}

TY - JOUR
AU - Lecumberry, Myriam
TI - Geometric structure of magnetic walls
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
AB - After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.
LA - eng
KW - micromagnetism; Hamilton-Jacobi problem; rectifiability; silicon-iron crystal
UR - http://eudml.org/doc/10608
ER -

References

top
  1. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. PDE 9 (1999) 4, 327-355. Zbl0960.49013MR1731470
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, (2000). Zbl0957.49001MR1857292
  3. L. Ambrosio, B. Kirchheim, M. Lecumberry and T. Rivière, On the rectifiability of defect measures arising in micromagnetic domains, Nonlinear problems in mathematical physics and related topics, II, 29-60, Int. Math. Ser. (N.Y.), 2. KluwerPlenum, New York, (2002). Zbl1055.49008MR1971988
  4. L. Ambrosio, M. Lecumberry and T. Riviere, A viscosity property of minimizing micromagnetic configurations, Comm. Pure Appl. Math.56 (2003), no 6, 681-688. Zbl1121.35309MR1959737
  5. C. De Lellis and F. Otto, Structure of entropy solutions: applications to variational problems, to appear in J. Europ. Math. Soc.. 
  6. C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional conservation laws, to appear in Arch. Ration. Mech. Anal. Zbl1036.35127
  7. C. De Lellis and T. Rivière, Concentration estimates for entropy measures, to appear in J. Math. Pures et Appl.. 
  8. A. Hubert and A. Schäfer, Magnetic domains: the analysis of magnetic microstructures, Springer, Berlin-New York, (1998). 
  9. M. Lecumberry and T. Rivière, The rectifiability of shock waves for the solutions of genuinely non-linear scalar conservation laws in 1+1 D., Preprint (2002). 
  10. T. Rivière, Parois et vortex en micromagnétisme, Journées “Equations aux dérivées partielles” (Forges-les-Eaux, 2002), Exp. no XIV. MR1968210
  11. T. Rivière and S. Serfaty, Limiting Domain Wall Energy for a Problem Related to Micromagnetics, Comm. Pure Appl. Math., 54, (2001), 294-338. Zbl1031.35142MR1809740
  12. T. Rivière and S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations28 (2003), no 1-2, 249-269. Zbl1094.35125MR1974456
  13. D. Serre, Systèmes de lois de conservation I, Diderot, (1996). Zbl0930.35002MR1459988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.