Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
Vladimir Georgiev; Atanas Stefanov; Mirko Tarulli
Journées Équations aux dérivées partielles (2005)
- page 1-17
- ISSN: 0752-0360
Access Full Article
topHow to cite
topGeorgiev, Vladimir, Stefanov, Atanas, and Tarulli, Mirko. "Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential." Journées Équations aux dérivées partielles (2005): 1-17. <http://eudml.org/doc/10611>.
@article{Georgiev2005,
author = {Georgiev, Vladimir, Stefanov, Atanas, Tarulli, Mirko},
journal = {Journées Équations aux dérivées partielles},
keywords = {Strichartz estimates; Schrödinger equation; dispersive properties; global scale invariant Strichartz smoothing estimates},
language = {eng},
month = {6},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential},
url = {http://eudml.org/doc/10611},
year = {2005},
}
TY - JOUR
AU - Georgiev, Vladimir
AU - Stefanov, Atanas
AU - Tarulli, Mirko
TI - Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
LA - eng
KW - Strichartz estimates; Schrödinger equation; dispersive properties; global scale invariant Strichartz smoothing estimates
UR - http://eudml.org/doc/10611
ER -
References
top- S. Agmon. Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2):151–218, 1975. Zbl0315.47007MR397194
- P. Alsholm and G. Schmidt. Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40:281–311, 1970/1971. Zbl0226.35076MR279631
- A. A. Balinsky, W. D. Evans, R. T. Lewis, On the number of negative eigenvalues of Schrödinger operators with an Aharonov-Bohm magnetic field. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.457 (2001), no. 2014, 2481–2489. Zbl0990.81031MR1862664
- J. A. Barcelo, A. Ruiz, and L. Vega. Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal.150 (1997), 356–382. Zbl0890.35028MR1479544
- J. Bergh and J. Löfström, Interpolation spaces, Springer Berlin, Heidelberg, New York, 1976. Zbl0344.46071MR482275
- V. Georgiev and M. Tarulli. Scale invariant energy smoothing estimates for the Scrödinger Equation with small Magnetic Potential. Preprint Universitá di Pisa, 2005. Zbl1100.35019
- J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1) (1995) 50–68. Zbl0849.35064MR1351643
- L. Hörmander, The analysis of linear partial differential operators. II. Differential operators with constant coefficients. Fundamental Principles of Mathematical Sciences, 257. Springer-Verlag, Berlin, 1983. Zbl0521.35002MR705278
- A. Ionescu, C. Kenig, Well - posedness and local smoothing of solutions of Schrödinger equations preprint 2005. Zbl1077.35108
- C. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33–69. Zbl0738.35022MR1101221
- C. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schrödinger equations., Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), no. 3, 255–288. Zbl0786.35121MR1230709
- C. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations., Invent. Math., 134 (1998), no. 3, 489–545. Zbl0928.35158MR1660933
- M. Keel and T. Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. Zbl0922.35028MR1646048
- I. Rodnianski, T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dientions. Comm. Math. Phys. 2005. Zbl1106.35073MR2100060
- A. Ruiz, L. Vega On local regularity of Schrödinger equations. Int. Math. Research Notes1, 1993, 13 – 27 . Zbl0812.35016MR1201747
- A. Ruiz, L. Vega Local regularity of solutions to wave equations with time–dependent potentials. Duke Math. Journal76, 1, 1994, 913 – 940. Zbl0826.35014MR1309336
- G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. Zbl1010.35015MR1924470
- E. Stein, Harmonic Analysis. Princeton Mathematical Series, Princeton Univ. Press, Princeton. Zbl0821.42001
- A. Stefanov Strichartz estimates for the magnetic Schrödinger equation preprint 2004. Zbl1121.35023
- M. Tarulli. Smoothing Estimates for Scalar Field with Electromagnetic Perturbation. EJDE. Vol. 2004(2004), No. 146, pp. 1-14. Zbl1089.35056
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.