Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential

Vladimir Georgiev; Atanas Stefanov; Mirko Tarulli

Journées Équations aux dérivées partielles (2005)

  • page 1-17
  • ISSN: 0752-0360

How to cite

top

Georgiev, Vladimir, Stefanov, Atanas, and Tarulli, Mirko. "Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential." Journées Équations aux dérivées partielles (2005): 1-17. <http://eudml.org/doc/10611>.

@article{Georgiev2005,
author = {Georgiev, Vladimir, Stefanov, Atanas, Tarulli, Mirko},
journal = {Journées Équations aux dérivées partielles},
keywords = {Strichartz estimates; Schrödinger equation; dispersive properties; global scale invariant Strichartz smoothing estimates},
language = {eng},
month = {6},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential},
url = {http://eudml.org/doc/10611},
year = {2005},
}

TY - JOUR
AU - Georgiev, Vladimir
AU - Stefanov, Atanas
AU - Tarulli, Mirko
TI - Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
LA - eng
KW - Strichartz estimates; Schrödinger equation; dispersive properties; global scale invariant Strichartz smoothing estimates
UR - http://eudml.org/doc/10611
ER -

References

top
  1. S. Agmon. Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2):151–218, 1975. Zbl0315.47007MR397194
  2. P. Alsholm and G. Schmidt. Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40:281–311, 1970/1971. Zbl0226.35076MR279631
  3. A. A. Balinsky, W. D. Evans, R. T. Lewis, On the number of negative eigenvalues of Schrödinger operators with an Aharonov-Bohm magnetic field. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.457 (2001), no. 2014, 2481–2489. Zbl0990.81031MR1862664
  4. J. A. Barcelo, A. Ruiz, and L. Vega. Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal.150 (1997), 356–382. Zbl0890.35028MR1479544
  5. J. Bergh and J. Löfström, Interpolation spaces, Springer Berlin, Heidelberg, New York, 1976. Zbl0344.46071MR482275
  6. V. Georgiev and M. Tarulli. Scale invariant energy smoothing estimates for the Scrödinger Equation with small Magnetic Potential. Preprint Universitá di Pisa, 2005. Zbl1100.35019
  7. J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1) (1995) 50–68. Zbl0849.35064MR1351643
  8. L. Hörmander, The analysis of linear partial differential operators. II. Differential operators with constant coefficients. Fundamental Principles of Mathematical Sciences, 257. Springer-Verlag, Berlin, 1983. Zbl0521.35002MR705278
  9. A. Ionescu, C. Kenig, Well - posedness and local smoothing of solutions of Schrödinger equations preprint 2005. Zbl1077.35108
  10. C. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33–69. Zbl0738.35022MR1101221
  11. C. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schrödinger equations., Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), no. 3, 255–288. Zbl0786.35121MR1230709
  12. C. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations., Invent. Math., 134 (1998), no. 3, 489–545. Zbl0928.35158MR1660933
  13. M. Keel and T. Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. Zbl0922.35028MR1646048
  14. I. Rodnianski, T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dientions. Comm. Math. Phys. 2005. Zbl1106.35073MR2100060
  15. A. Ruiz, L. Vega On local regularity of Schrödinger equations. Int. Math. Research Notes1, 1993, 13 – 27 . Zbl0812.35016MR1201747
  16. A. Ruiz, L. Vega Local regularity of solutions to wave equations with time–dependent potentials. Duke Math. Journal76, 1, 1994, 913 – 940. Zbl0826.35014MR1309336
  17. G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. Zbl1010.35015MR1924470
  18. E. Stein, Harmonic Analysis. Princeton Mathematical Series, Princeton Univ. Press, Princeton. Zbl0821.42001
  19. A. Stefanov Strichartz estimates for the magnetic Schrödinger equation preprint 2004. Zbl1121.35023
  20. M. Tarulli. Smoothing Estimates for Scalar Field with Electromagnetic Perturbation. EJDE. Vol. 2004(2004), No. 146, pp. 1-14. Zbl1089.35056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.