Small solutions to nonlinear Schrödinger equations
Carlos E. Kenig; Gustavo Ponce; Luis Vega
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 3, page 255-288
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKenig, Carlos E., Ponce, Gustavo, and Vega, Luis. "Small solutions to nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 10.3 (1993): 255-288. <http://eudml.org/doc/78303>.
@article{Kenig1993,
author = {Kenig, Carlos E., Ponce, Gustavo, Vega, Luis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {local existence; Cauchy problem; nonlinear Schrödinger equation; boundedness of the initial data; smoothing effect of Kato type},
language = {eng},
number = {3},
pages = {255-288},
publisher = {Gauthier-Villars},
title = {Small solutions to nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78303},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Kenig, Carlos E.
AU - Ponce, Gustavo
AU - Vega, Luis
TI - Small solutions to nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 3
SP - 255
EP - 288
LA - eng
KW - local existence; Cauchy problem; nonlinear Schrödinger equation; boundedness of the initial data; smoothing effect of Kato type
UR - http://eudml.org/doc/78303
ER -
References
top- [1] A. Carbery, Radial Fourier multipliers and associated maximal function, North Holland Math. Studies, III, 1985, pp. 49-55. Zbl0632.42012MR848141
- [2] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos, Vol. 22, Universidade Federal do Rio de Janeiro. Zbl0584.35022
- [3] T. Cazenave and F.B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Lecture in Math, Vol. 1392, Springer-Verlag, Berlin, New York, 1989, pp. 18-29. Zbl0694.35170MR1021011
- [4] F.M. Christ and M. Weinstein, Dispersive small amplitude solution to the generalized Korteweg-de Vries equation, J. Funct. Anal., Vol. 100, 1991, pp. 87-109. Zbl0743.35067MR1124294
- [5] R.R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiel, Astérisque, Vol. 57, 1973. Zbl0483.35082
- [6] P. Constantin, and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math., Soc., Vol. 1, 1989, pp. 413-446. Zbl0667.35061MR928265
- [7] B. Dahlberg and C.E. Kenig, A note an almost every where behavior of solutions to the schrödinger equations, Lecture Notes in Math., Vol. 908, Springer-Verlag, Berlin, New York, 1982, pp. 205-208. Zbl0519.35022MR654188
- [8] J. Ginibre, and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equation, J. Math. pures et appl., Vol. 64, 1985, pp. 363-401. Zbl0535.35069MR839728
- [9] J. Ginibre and G. Velo, On a class of Schrödinger equations, J. Funct. Anal., Vol. 32, 1979, pp. 1-71. Zbl0396.35028MR533219
- [10] J. Ginibre and Y. Tsutsumi, Uniqueness for the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., Vol. 20, 1989, pp. 1388-1425. Zbl0702.35224MR1019307
- [11] J.M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewarson systems, Nonlinearity, Vol. 3, 1990, pp. 475-506. Zbl0727.35111MR1054584
- [12] R.T. Glassey, On the blowing up solutions to the Cauchy problem for nonlinar Schrödinger equations, J. Math. Phys., Vol. 18, 1979, pp. 1794-1797. Zbl0372.35009MR460850
- [13] N. Hayashi, Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J, Vol. 62, 1991, pp. 575-592. MR1054532
- [14] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions to the initial value problem for the nonlinear Schrödinger equations in one dimensions, Math. Z., Vol. 192, 1986, pp. 637-650. Zbl0617.35025MR847012
- [15] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions to the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., Vol. 71, 1987, pp. 218-245. Zbl0657.35033MR880978
- [16] N. Hayashi and S. Saitoh, Analyticity and global existence of small solutions to some nonlinear Shrödinger equations, Comm. Math. Phys., Vol. 129, 1990, pp. 27-41. Zbl0705.35132MR1046275
- [17] T. Kato, Quasilinear evolution equation, with applications to partial differential equations, Lecture Notes in Math., Vol. 448, pringer-Verlag, pp. 27-50.
- [18] T. Kato, Nonlinear Schrödinger equation, Schrodinger operators, H. Holden and A. Jensen Eds, Lecture Notes in Physics, Vol. 345, Springer-Verlag, Berlin, New York, 1989, pp. 218-263. Zbl0698.35131
- [19] T. Kato, On the Cauchy problem for the (generalized) Kortewed-de Vries equation, Advances in Math. Supp. Studies, Studies in Applied Math., Vol. 8, 1983, pp. 93-128. Zbl0549.34001MR759907
- [20] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 891-907. Zbl0671.35066MR951744
- [21] D.J. Kaup and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Vol. 19, 1978, pp. 798-801. Zbl0383.35015MR464963
- [22] C.E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., Vol. 4, 1991, pp. 323-347. Zbl0737.35102MR1086966
- [23] C.E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana University Math. J., Vol. 40, 1991, pp. 33-69. Zbl0738.35022MR1101221
- [24] C.E. Kenig, G. Ponce and L. Vega, On the generalized Benjamin-Ono equation, Trans. Amer. Math. Soc., (to appear). Zbl0804.35105MR1153015
- [25] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for generalized Korteweg-de Vries via contraction principle, Comm. Pure Appl. Math., Vol. 46, 1993, p. 527-620. Zbl0808.35128MR1211741
- [26] C.E. Kenig, and A. Ruiz, A strong type (2, 2) estimate for the maximal function associated to the Schrödinger equation, Trans. Amer. Math. Soc., Vol. 280, 1983, pp. 239-246. Zbl0525.42011MR712258
- [27] S. Klainerman, Long time behavior of solutions to nonlinear evolutions equations, Arch. Ration. Mech. and Analysis, 78, 1981, pp. 73-98. Zbl0502.35015MR654553
- [28] S. Klainerman and G. Ponce, Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 133-141. Zbl0509.35009MR680085
- [29] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Diff. Eqs., Vol. 46, 1982, pp. 409-423. Zbl0518.35046MR681231
- [30] J. Simon and E. Taflin, Wave operators and analytic solutions for systems of systems of nonlinear Klein-Gordon equations and of non-linear Schrödinger equations, Comm. Math. Phys., 99, 1985, pp. 541-562. Zbl0615.47034MR796012
- [31] P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math., 55, 1987, pp. 699-715. Zbl0631.42010MR904948
- [32] E.M. Stein, Oscillaroty integrals in Fourier Analysis, Beijing Lectures in Harmonic Analysis, Princeton University Press, 1986, pp. 307-355. Zbl0618.42006MR864375
- [33] E.M. Stein and G. Weiss, Introduction to Fourier Analysis in Eucliden Spaces, Princeton University Press, 1971. Zbl0232.42007MR304972
- [34] W.A. Srauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41, 1981, pp. 110-133. Zbl0466.47006
- [35] R.S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Vol. 44, 1977, pp. 705-714. Zbl0372.35001MR512086
- [36] Y. Tsutsumi, Global strong solutions for nonlinear Schrödinger equation, Nonlinear Anal., 11, 1987, pp. 1143-1154. Zbl0657.35032MR913674
- [37] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcialaj Ekvacioj, Vol. 31, 1987, pp. 115-125. Zbl0638.35021MR915266
- [38] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation. Existence and Uniqueness Theorem, Funkcialaj Ekvacioj, 23, 1980, pp. 259-277. Zbl0478.35032MR621533
- [39] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schröndinger equation. II, Funkcialaj Ekvacioj, 24, 1981, pp. 85-94. Zbl0491.35016MR634894
- [40] L. Vega, Doctoral Thesis, Universidad Autonoma de Madrid, Spain, 1987.
- [41] L. Vega, The Schrödinger eqution: pointwise convergence to the initial date, Proc. Amer. Math. Soc., Vol. 102, 1988, pp. 874-878. Zbl0654.42014MR934859
Citations in EuDML Documents
top- XS. Feng, F. Wei, On global solutions to a nonlinear Alfvén wave equation
- Gustavo Ponce, Local existence theory for the generalized Schrödinger equation
- Nakao Hayashi, Local existence in time of small solutions to the Davey-Stewartson systems
- Felipe Linares, Gustavo Ponce, On the Davey-Stewartson systems
- Jean-Marc Delort, Solutions globales pour l’équation de Schrödinger à nonlinéarités quadratiques et à données petites
- Alberto Ruiz, Regularizing estimates for Schrödinger and wave equations
- Baoxiang Wang, Lijia Han, Chunyan Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data
- Tohru Ozawa, Jian Zhai, Global existence of small classical solutions to nonlinear Schrödinger equations
- Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli, Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
- Jean-David Benamou, François Castella, Thodoros Katsaounis, Benoît Perthame, High Frequency limit of the Helmholtz Equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.