A controllability result for the 1 -D isentropic Euler equation

Olivier Glass[1]

  • [1] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte courrier 187, 75252 Paris Cedex 05, France.

Journées Équations aux dérivées partielles (2005)

  • page 1-22
  • ISSN: 0752-0360

How to cite

top

Glass, Olivier. "A controllability result for the $1$-D isentropic Euler equation." Journées Équations aux dérivées partielles (2005): 1-22. <http://eudml.org/doc/10612>.

@article{Glass2005,
affiliation = {Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte courrier 187, 75252 Paris Cedex 05, France.},
author = {Glass, Olivier},
journal = {Journées Équations aux dérivées partielles},
keywords = {isentropic Euler equations; controllability; conservation laws},
language = {eng},
month = {6},
pages = {1-22},
publisher = {Groupement de recherche 2434 du CNRS},
title = {A controllability result for the $1$-D isentropic Euler equation},
url = {http://eudml.org/doc/10612},
year = {2005},
}

TY - JOUR
AU - Glass, Olivier
TI - A controllability result for the $1$-D isentropic Euler equation
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 22
LA - eng
KW - isentropic Euler equations; controllability; conservation laws
UR - http://eudml.org/doc/10612
ER -

References

top
  1. Alber H.-D., Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190 (1985), no. 2, pp. 249–276. Zbl0581.35049MR797541
  2. Ancona F., Bressan A., Coclite G.M., Some results on the boundary control of systems of conservation laws. Hyperbolic problems: theory, numerics, applications, pp. 255–264, Springer, Berlin, 2003. Zbl1073.93029MR2053176
  3. Ancona F., Coclite G.M., On the attainable set for Temple class systems with boundary controls. Preprint SISSA (2002). Zbl1087.93010
  4. Ancona F., Marson A., On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998), no. 1, pp. 290–312. Zbl0919.35082MR1616586
  5. Beauchard K., Local controllability of a 1 -D Schrödinger equation, J. Math. Pures Appl. 84 (2005), no. 7, pp. 851–956. Zbl1124.93009MR2144647
  6. Bressan A., Hyperbolic systems of conservation laws, the one-dimensional problem, Oxford Lecture Series in Mathematics and its Applications 20, 2000. Zbl0997.35002MR1816648
  7. Bressan A., Coclite G.M., On the boundary control of systems of conservation laws. SIAM J. Control Optim. 41 (2002), no. 2, 607–622 Zbl1026.35075MR1920513
  8. Corli A., Sablé-Tougeron M., Perturbations of bounded variation of a strong shock wave. J. Differential Equations 138 (1997), no. 2, pp. 195–228. Zbl0881.35071MR1462267
  9. Coron J.-M., Global Asymptotic Stabilization for controllable systems without drift, Math. Control Signal Systems, 5, 1992, pp. 295-312. Zbl0760.93067MR1164379
  10. Coron J.-M., On the controllability of 2 -D incompressible perfect fluids, J. Math. Pures Appl., 75 (1996), no. 2, pp. 155–188. Zbl0848.76013MR1380673
  11. Coron J.-M. Local controllability of a 1 -D tank containing a fluid modeled by the shallow water equations. A tribute to J. L. Lions. ESAIM Control Optim. Calc. Var. 8 (2002), pp. 513–554. Zbl1071.76012MR1932962
  12. Dafermos C. M., Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972), pp. 33–41. Zbl0233.35014MR303068
  13. Di Perna R. J., Global solutions to a class of nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 26 (1973), pp. 1–28. Zbl0243.35068MR330788
  14. Dubois F., LeFloch P.G., Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988), no. 1, pp. 93–122. Zbl0649.35057MR922200
  15. Glass O., Exact boundary controllability of 3 - D Euler equation, ESAIM Control Optim. Calc. Var. 5 (2000) pp. 1–44. Zbl0940.93012MR1745685
  16. Glass O., On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003), no. 2, pp. 332–379. Zbl1109.93007MR2016816
  17. Glass O., On the controllability of the 1 -D isentropic Euler equation, preprint. Zbl1293.35227
  18. Glimm J., Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), pp. 697–715. Zbl0141.28902MR194770
  19. Glimm J., Lax, P. D., Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the A.M.S. 101 (1970). Zbl0204.11304MR265767
  20. Horsin T., On the controllability of the Burgers equation. ESAIM: Control Opt. Calc. Var. 3 (1998), pp. 83-95. Zbl0897.93034MR1612027
  21. Lax P. D., Hyperbolic Systems of Conservation Laws. Comm. Pure Appl. Math. 10 (1957), pp. 537-566. Zbl0081.08803MR93653
  22. Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS Regional Conference Series in Applied Mathematics, No. 11. SIAM, Philadelphia, 1973. Zbl0268.35062MR350216
  23. Li T.-T.; Rao B.-P., Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim. 41 (2003), no. 6, pp. 1748–1755. Zbl1032.35124MR1972532
  24. Lions P.-L., Perthame B., Souganidis P. E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49 (1996), no. 6, pp. 599–638. Zbl0853.76077MR1383202
  25. Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New-York, 1984. Zbl0537.76001MR748308
  26. Risebro, N. H., A front-tracking alternative to the random choice method. Proc. Amer. Math. Soc. 117 (1993), no. 4, pp. 1125–1139. Zbl0799.35153MR1120511
  27. Sablé-Tougeron M., Stabilité de la structure d’une solution de Riemann à deux grands chocs. Ann. Univ. Ferrara Sez. VII (N.S.) 44 (1998), pp. 129–172. Zbl0943.35052MR1744132
  28. Schochet S., Sufficient conditions for local existence via Glimm’s scheme for large BV data. J. Differential Equations 89 (1991), no. 2, 317–354. Zbl0733.35072MR1091481
  29. Wagner D., Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differential Equations 68 (1987), no. 1, pp. 118–136. Zbl0647.76049MR885816

NotesEmbed ?

top

You must be logged in to post comments.