On the controllability of the burger equation

T. Horsin

ESAIM: Control, Optimisation and Calculus of Variations (1998)

  • Volume: 3, page 83-95
  • ISSN: 1292-8119

How to cite

top

Horsin, T.. "On the controllability of the burger equation." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 83-95. <http://eudml.org/doc/90535>.

@article{Horsin1998,
author = {Horsin, T.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Burger equation; controllability; linearization; variation of the domain},
language = {eng},
pages = {83-95},
publisher = {EDP Sciences},
title = {On the controllability of the burger equation},
url = {http://eudml.org/doc/90535},
volume = {3},
year = {1998},
}

TY - JOUR
AU - Horsin, T.
TI - On the controllability of the burger equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 83
EP - 95
LA - eng
KW - Burger equation; controllability; linearization; variation of the domain
UR - http://eudml.org/doc/90535
ER -

References

top
  1. [1] F. Ancona, A. Marson: On the Attainable Set for Scalar Nonlinear Conservation Laws with Boundary Control, SIAM J. of control, to appear. Zbl0919.35082MR1616586
  2. [2] J-M. Coron: Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems, 5, 1992, 295-312. Zbl0760.93067MR1164379
  3. [3] J-M. Coron: Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C.-R. Acad. Sci. Paris, 317, Série 1, 1993, 271-276. Zbl0781.76013MR1233425
  4. [4] J-M. Coron: On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM: Control, Optimisation and Caleulus of Variations, http://www.emath.fr/cocv/, 1, 1996, 35-75. Zbl0872.93040MR1393067
  5. [5] J.I. Diaz: Sobre la controlabilidad aproximada de problemas no lineales disipativos, proceedings of Jornadas Hispano-Francsas sobre Control de sistemas distribuidos, A. Valle ed., Univ. de Malága, 1990, 41-48. Zbl0752.49002MR1108869
  6. [6] C. Fabre, J-P. Puel, E. Zuazua: Contrôlabilité approchée de l'équation de la chaleur semilinaire, C.-R. Acad. Sci. Paris, 315, Série 1, 1992, 807-812. Zbl0770.35009MR1184907
  7. [7] C. Fabre, J-P. Puel, E. Zuazua: Approximate Controllability of the semilinear heat equation, Proc. of the Royal Soc. of Edinburgh, 125A, 1995, 31-61. Zbl0818.93032MR1318622
  8. [8] A. Fursikov, O. Yu. Imanuvilov: On controllability of certain systems simulating a fluid flow, IMA vol. in Math. and its Appl. Flow Control, M.D. Gunzburger ed., Springer Verlag, New York, 68, 1994. Zbl0922.93006MR1348646
  9. [9] A. Fursikov, O. Yu. Imanuvilov: Controllability of evolution equations, Lecture Notes Series 34, Res. Imst., Math. GARC, Seoul National University, 1996. Zbl0862.49004MR1406566
  10. [10] M. Gisclon: Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique, Thèse de l'université Lyon I, 1996. Zbl0869.35061
  11. [11] G. Godlevski, P.A. Raviart: Hyperbolic systems of conservation laws, Ellipses, 1990. Zbl0768.35059
  12. [12] P.D. Lax: Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conference Series in Applied Mathematics, 11, SIAM: Philadelphia, 1973. Zbl0268.35062MR350216
  13. [13] P. Le Floch: Explicit Formula for Scalar Nonlinear Conservation Laws with boundary condition, Math. Methods Appl. Sci., 10, 1988, 265-287. Zbl0679.35065MR949657
  14. [14] B.J. Lucier: Regularity through approximation for scalar conservation laws, SIAM J. Math. Anal., 19, 1988, 763-773. MR946641
  15. [15] O.A. Oleinik: Discontinuous solutions of nonlinear differential equations, Usp. Math. Nauk (N.S.), 12, 1957, 3-73; English translation: Amer. Math. Soc. Transl., 26, Ser. 2, 95-172. Zbl0131.31803MR151737
  16. [16] L. Rosier: Exact Boundary Controllability for the Korteveg-de Vries Equation on a Bounded Domain, ESAIM: Control, Optimisation and Calculus of Variations, http://www.emath.fr/cocv/, 2, 1997, 33-55. Zbl0873.93008MR1440078
  17. [17] D.L. Russell: Exact boundary value controllability theorems for wave and heat processes in starcomplemented regions, in Differential Games and Control Theory, Roxin, Liu and Sternberg Eds., Marcel Dekker, New York, 1974, 291-319. Zbl0308.93007MR467472
  18. [18] A.I. Vol'pert: The spaces BV and quasilinear equations, Math. USSR Sbornik, 2, 1967, 225-267. Zbl0168.07402MR216338

Citations in EuDML Documents

top
  1. S. Guerrero, O. Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces
  2. Olivier Glass, A controllability result for the 1 -D isentropic Euler equation
  3. Karine Beauchard, Controllability of Schrödinger equations
  4. Oleg Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations
  5. Jean-Michel Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations
  6. Jean-Michel Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations
  7. Oleg Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations
  8. Karine Beauchard, Controllablity of a quantum particle in a 1D variable domain
  9. Karine Beauchard, Controllability of a quantum particle in a 1D variable domain
  10. Thierry Horsin, Local exact lagrangian controllability of the Burgers viscous equation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.