Dispersive estimates and absence of embedded eigenvalues
Herbert Koch[1]; Daniel Tataru[2]
- [1] Fachbereich Mathematik, Universität Dortmund
- [2] Department of Mathematics, University of California, Berkeley
Journées Équations aux dérivées partielles (2005)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topKoch, Herbert, and Tataru, Daniel. "Dispersive estimates and absence of embedded eigenvalues." Journées Équations aux dérivées partielles (2005): 1-10. <http://eudml.org/doc/10613>.
@article{Koch2005,
abstract = {In [2] Kenig, Ruiz and Sogge proved\[ \Vert u \Vert \_\{L^\{\frac\{2n\}\{n-2\}\}(\mathbb\{R\}^n)\} \lesssim \Vert L u \Vert \_\{L^\{\frac\{2n\}\{n+2\}\}(\mathbb\{R\}^n)\} \]provided $n \ge 3$, $u \in C^\{\infty \}_0(\mathbb\{R\}^n)$ and $L$ is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with $C^2$ coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in $L^\{\frac\{n+1\}\{2\}\}$ and variants thereof.},
affiliation = {Fachbereich Mathematik, Universität Dortmund; Department of Mathematics, University of California, Berkeley},
author = {Koch, Herbert, Tataru, Daniel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Schrödinger operator; embedded eigenvalues; Carleman estimates},
language = {eng},
month = {6},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Dispersive estimates and absence of embedded eigenvalues},
url = {http://eudml.org/doc/10613},
year = {2005},
}
TY - JOUR
AU - Koch, Herbert
AU - Tataru, Daniel
TI - Dispersive estimates and absence of embedded eigenvalues
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - In [2] Kenig, Ruiz and Sogge proved\[ \Vert u \Vert _{L^{\frac{2n}{n-2}}(\mathbb{R}^n)} \lesssim \Vert L u \Vert _{L^{\frac{2n}{n+2}}(\mathbb{R}^n)} \]provided $n \ge 3$, $u \in C^{\infty }_0(\mathbb{R}^n)$ and $L$ is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with $C^2$ coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in $L^{\frac{n+1}{2}}$ and variants thereof.
LA - eng
KW - Schrödinger operator; embedded eigenvalues; Carleman estimates
UR - http://eudml.org/doc/10613
ER -
References
top- A. D. Ionescu and D. Jerison. On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13(5):1029–1081, 2003. Zbl1055.35098MR2024415
- C. E. Kenig, A. Ruiz, and C. D. Sogge. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J., 55(2):329–347, 1987. Zbl0644.35012MR894584
- Herbert Koch and Daniel Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math., 58(2):217–284, 2005. Zbl1078.35143MR2094851
- Michael Reed and Barry Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. Zbl0401.47001MR493421
- Christopher D. Sogge. Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. Zbl0783.35001MR1205579
- J. von Neumann and E.P. Wigner. Über merkwürdige diskrete Eigenwerte. Z. Phys., 30:465–467, 1929. Zbl55.0520.04
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.