The Quantum Birkhoff Normal Form and Spectral Asymptotics
San Vũ Ngọc[1]
- [1] Institut Fourier (UMR 5582), Université Joseph Fourier, Grenoble 1, BP 74, 38402-Saint Martin d’Hères Cedex, France.
Journées Équations aux dérivées partielles (2006)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topVũ Ngọc, San. "The Quantum Birkhoff Normal Form and Spectral Asymptotics." Journées Équations aux dérivées partielles (2006): 1-12. <http://eudml.org/doc/10616>.
@article{VũNgọc2006,
abstract = {In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy $E$. This permits a detailed study of the spectrum in various asymptotic regions of the parameters $(E,\hbar)$, and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.},
affiliation = {Institut Fourier (UMR 5582), Université Joseph Fourier, Grenoble 1, BP 74, 38402-Saint Martin d’Hères Cedex, France.},
author = {Vũ Ngọc, San},
journal = {Journées Équations aux dérivées partielles},
keywords = {Birkhoff normal form; resonances; pseudo-differential operators; spectral asymptotics; symplectic reduction; Toeplitz operators; eigenvalue cluster},
language = {eng},
month = {6},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The Quantum Birkhoff Normal Form and Spectral Asymptotics},
url = {http://eudml.org/doc/10616},
year = {2006},
}
TY - JOUR
AU - Vũ Ngọc, San
TI - The Quantum Birkhoff Normal Form and Spectral Asymptotics
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy $E$. This permits a detailed study of the spectrum in various asymptotic regions of the parameters $(E,\hbar)$, and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.
LA - eng
KW - Birkhoff normal form; resonances; pseudo-differential operators; spectral asymptotics; symplectic reduction; Toeplitz operators; eigenvalue cluster
UR - http://eudml.org/doc/10616
ER -
References
top- G.D. Birkhoff. Dynamical systems. AMS, 1927. Zbl0171.05402
- L. Charles. Toeplitz operators and Hamiltonian torus actions. Jour. Funct. Analysis, 2006. To appear. Zbl1099.53059MR2227136
- L. Charles and S. Vũ Ngọc. Spectral asymptotics via the semiclassical birkhoff normal form. math.SP/0605096. Zbl1154.58015
- Y. Colin de Verdière. Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helv., 54:508–522, 1979. Zbl0459.58014MR543346
- J. J. Duistermaat. Non-integrability of the 1:1:2 resonance. Ergodic Theory Dynamical Systems, 4:553–568, 1984. Zbl0537.58026MR779713
- B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit. I. Comm. Partial Differential Equations, 9:337–408, 1984. Zbl0546.35053MR740094
- M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc. Diophantine tori and spectral asymptotics for non-selfadjoint operators. math.SP/0502032. À paraître dans Am. J. Math., 2005.
- R. Pérez-Marco. Convergence or generic divergence of the Birkhoff normal form. Ann. of Math. (2), 157(2):557–574, 2003. Zbl1038.37048MR1973055
- G. Popov. Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms. Ann. Henri Poincaré, 1(2):249–279, 2000. Zbl1002.37028MR1770800
- B. Simon. Semiclassical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré. Phys. Théor., 38(3):295–307, 1983. a correction in 40:224. Zbl0537.35023MR708966
- J. Sjöstrand. Semi-excited states in nondegenerate potential wells. Asymptotic Analysis, 6:29–43, 1992. Zbl0782.35050MR1188076
- S. Vũ Ngọc. Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités. PhD thesis, Université Grenoble 1, 1998.
- A. Weinstein. Asymptotics of eigenvalue clusters for the laplacian plus a potential. Duke Math. J., 44(4):883–892, 1977. Zbl0385.58013MR482878
- Nguyên Tiên Zung. Convergence versus integrability in Birkhoff normal form. Ann. of Math. (2), 161(1):141–156, 2005. Zbl1076.37045MR2150385
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.