The Quantum Birkhoff Normal Form and Spectral Asymptotics

San Vũ Ngọc[1]

  • [1] Institut Fourier (UMR 5582), Université Joseph Fourier, Grenoble 1, BP 74, 38402-Saint Martin d’Hères Cedex, France.

Journées Équations aux dérivées partielles (2006)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy E . This permits a detailed study of the spectrum in various asymptotic regions of the parameters ( E , ) , and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.

How to cite

top

Vũ Ngọc, San. "The Quantum Birkhoff Normal Form and Spectral Asymptotics." Journées Équations aux dérivées partielles (2006): 1-12. <http://eudml.org/doc/10616>.

@article{VũNgọc2006,
abstract = {In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy $E$. This permits a detailed study of the spectrum in various asymptotic regions of the parameters $(E,\hbar)$, and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.},
affiliation = {Institut Fourier (UMR 5582), Université Joseph Fourier, Grenoble 1, BP 74, 38402-Saint Martin d’Hères Cedex, France.},
author = {Vũ Ngọc, San},
journal = {Journées Équations aux dérivées partielles},
keywords = {Birkhoff normal form; resonances; pseudo-differential operators; spectral asymptotics; symplectic reduction; Toeplitz operators; eigenvalue cluster},
language = {eng},
month = {6},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The Quantum Birkhoff Normal Form and Spectral Asymptotics},
url = {http://eudml.org/doc/10616},
year = {2006},
}

TY - JOUR
AU - Vũ Ngọc, San
TI - The Quantum Birkhoff Normal Form and Spectral Asymptotics
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy $E$. This permits a detailed study of the spectrum in various asymptotic regions of the parameters $(E,\hbar)$, and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.
LA - eng
KW - Birkhoff normal form; resonances; pseudo-differential operators; spectral asymptotics; symplectic reduction; Toeplitz operators; eigenvalue cluster
UR - http://eudml.org/doc/10616
ER -

References

top
  1. G.D. Birkhoff. Dynamical systems. AMS, 1927. Zbl0171.05402
  2. L. Charles. Toeplitz operators and Hamiltonian torus actions. Jour. Funct. Analysis, 2006. To appear. Zbl1099.53059MR2227136
  3. L. Charles and S. Vũ Ngọc. Spectral asymptotics via the semiclassical birkhoff normal form. math.SP/0605096. Zbl1154.58015
  4. Y. Colin de Verdière. Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helv., 54:508–522, 1979. Zbl0459.58014MR543346
  5. J. J. Duistermaat. Non-integrability of the 1:1:2 resonance. Ergodic Theory Dynamical Systems, 4:553–568, 1984. Zbl0537.58026MR779713
  6. B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit. I. Comm. Partial Differential Equations, 9:337–408, 1984. Zbl0546.35053MR740094
  7. M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc. Diophantine tori and spectral asymptotics for non-selfadjoint operators. math.SP/0502032. À paraître dans Am. J. Math., 2005. 
  8. R. Pérez-Marco. Convergence or generic divergence of the Birkhoff normal form. Ann. of Math. (2), 157(2):557–574, 2003. Zbl1038.37048MR1973055
  9. G. Popov. Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms. Ann. Henri Poincaré, 1(2):249–279, 2000. Zbl1002.37028MR1770800
  10. B. Simon. Semiclassical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré. Phys. Théor., 38(3):295–307, 1983. a correction in 40:224. Zbl0537.35023MR708966
  11. J. Sjöstrand. Semi-excited states in nondegenerate potential wells. Asymptotic Analysis, 6:29–43, 1992. Zbl0782.35050MR1188076
  12. S. Vũ Ngọc. Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités. PhD thesis, Université Grenoble 1, 1998. 
  13. A. Weinstein. Asymptotics of eigenvalue clusters for the laplacian plus a potential. Duke Math. J., 44(4):883–892, 1977. Zbl0385.58013MR482878
  14. Nguyên Tiên Zung. Convergence versus integrability in Birkhoff normal form. Ann. of Math. (2), 161(1):141–156, 2005. Zbl1076.37045MR2150385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.