Page 1 Next

Displaying 1 – 20 of 65

Showing per page

Berezin transform for non-scalar holomorphic discrete series

Benjamin Cahen (2012)

Commentationes Mathematicae Universitatis Carolinae

Let M = G / K be a Hermitian symmetric space of the non-compact type and let π be a discrete series representation of G which is holomorphically induced from a unitary irreducible representation ρ of K . In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of π . Here we study the corresponding...

Berezin-Weyl quantization for Cartan motion groups

Benjamin Cahen (2011)

Commentationes Mathematicae Universitatis Carolinae

We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].

Classifications of star products and deformations of Poisson brackets

Philippe Bonneau (2000)

Banach Center Publications

On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.

Conformally equivariant quantization : existence and uniqueness

Christian Duval, Pierre Lecomte, Valentin Ovsienko (1999)

Annales de l'institut Fourier

We prove the existence and the uniqueness of a conformally equivariant symbol calculus and quantization on any conformally flat pseudo-riemannian manifold ( M , g ) . In other words, we establish a canonical isomorphism between the spaces of polynomials on T * M and of differential operators on tensor densities over M , both viewed as modules over the Lie algebra o ( p + 1 , q + 1 ) where p + q = dim ( M ) . This quantization exists for generic values of the weights of the tensor densities and we compute the critical values of the weights yielding...

Contact Quantization: Quantum Mechanics = Parallel transport

G. Herczeg, E. Latini, Andrew Waldron (2018)

Archivum Mathematicum

Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms...

Deformation on phase space.

Oscar Arratia, M.ª Angeles Martín Mínguez, María Angeles del Olmo (2002)

RACSAM

El trabajo que presentamos constituye una revisión de varios procedimientos de cuantización basados en un espacio de fases clásico M. Estos métodos consideran a la mecánica cuántica como una "deformación" de la mecánica clásica por medio de la "transformación" del álgebra conmutativa C∞(M) en una nueva álgebra no conmutativa C∞(M)ħ. Todas estas ideas conducen de modo natural a los grupos cuánticos como deformación (o cuantización en un sentido amplio) de los grupos de Poisson-Lie, lo cual también...

Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach, Juan Monterde (2002)

Annales de l’institut Fourier

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...

Currently displaying 1 – 20 of 65

Page 1 Next