Effet de Kato pour un problème extérieur relatif à une équation de Schrödinger avec un potentiel non borné
Luc Robbiano[1]; Claude Zuily[1]
- [1] Mathématiques,Université Paris Sud, F-91405 Orsay
Journées Équations aux dérivées partielles (2006)
- page 1-7
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topRobbiano, Luc, and Zuily, Claude. "Effet de Kato pour un problème extérieur relatif à une équation de Schrödinger avec un potentiel non borné." Journées Équations aux dérivées partielles (2006): 1-7. <http://eudml.org/doc/10617>.
@article{Robbiano2006,
abstract = {On montre que les solutions d’une équation de Schrödinger à coefficients variables dont le potentiel est non borné à l’infini dans un domaine extérieur est, localement en temps et en espace, $\frac\{1\}\{2\}$ fois plus régulière en espace que la donnée initiale.},
affiliation = {Mathématiques,Université Paris Sud, F-91405 Orsay; Mathématiques,Université Paris Sud, F-91405 Orsay},
author = {Robbiano, Luc, Zuily, Claude},
journal = {Journées Équations aux dérivées partielles},
language = {fre},
month = {6},
pages = {1-7},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Effet de Kato pour un problème extérieur relatif à une équation de Schrödinger avec un potentiel non borné},
url = {http://eudml.org/doc/10617},
year = {2006},
}
TY - JOUR
AU - Robbiano, Luc
AU - Zuily, Claude
TI - Effet de Kato pour un problème extérieur relatif à une équation de Schrödinger avec un potentiel non borné
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 7
AB - On montre que les solutions d’une équation de Schrödinger à coefficients variables dont le potentiel est non borné à l’infini dans un domaine extérieur est, localement en temps et en espace, $\frac{1}{2}$ fois plus régulière en espace que la donnée initiale.
LA - fre
UR - http://eudml.org/doc/10617
ER -
References
top- Burq, N. : Mesures semi classiques et mesures de défaut, Séminaire Bourbaki, Astérisque n°2, 45 (1997) 163,178. Zbl0954.35102MR1627111
- Burq, N. : Smoothing effect for Schrödinger boundary value problems, Duke Math. J. 123 (2004) 403-430. Zbl1061.35024MR2066943
- Burq, N. : Semi classical estimates for the resolvent in non trapping geometries, IMRN n°5 (2002) 221-241. Zbl1161.81368MR1876933
- Burq N., Gérard P. : Condition nécessaire et suffisante pour la contrôlabilité locale exacte des ondes CRAS Paris, 325 (1997) 749-752. Zbl0906.93008MR1483711
- Constantin, P., Saut, J-C. : Local smoothing properties of dispersive equations, Journal American Mathematical Society (1988) 413-439. Zbl0667.35061MR928265
- Doï, S. : Smoothing effects of Schrödinger evolution group on Riemannian manifolds, Duke Math. J. 82 (1996) 679-706. Zbl0870.58101MR1387689
- Doï, S. : Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000) 355-389. Zbl0969.35029MR1795567
- Doï, S. : Remarks on the Cauchy problem for Schrödinger type equations, Comm. in pde, 21 (1996) 163-178. Zbl0853.35025MR1373768
- Doï, S. : Smoothness of solutions for Schrödinger equations with unbounded potential., Publ.Res.Inst.Math.Sci 41 (2005), 1, 175-221. Zbl1082.35054MR2115971
- Gérard P.- Leichtnam E. : Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 n°2 (1993) 559-607. Zbl0788.35103MR1233448
- Kato T. : On the Cauchy problem for the (generalized) KdV equation, Stud. Appl. Math. Adv. Math. Suppl. Stud. 8 (1983) 93-128. Zbl0549.34001MR759907
- Lebeau, G. : Equation des ondes amorties , Algebraic and Geometric methods in Math. Physics. Math. Phys. Studies, Kluwer Acad. Publ. Dordrecht 19 (1996) 73-109. Zbl0863.58068MR1385677
- Melrose R.B., Sjöstrand J. : Singularities of boundary value problems I, Comm.on pure and Appl. Math. 31 n°5 (1978) 593-617. Zbl0368.35020MR492794
- Miller L. : Refraction of high frequency waves density by sharp interfaces and semi classical measures at boundary, J. Math. Pures Appl. (9) 79 n°3 (2000) 227-269. Zbl0963.35022MR1750924
- Robbiano L., Zuily C. : The Kato smoothing effect for Schrödinger equations with unbounded potentials in exterior domains. To appear. Zbl1166.35012
- Sjölin P. : Regularity of solution to the Schrödinger equation, Duke Math. J. 55 (1987) 699-715. Zbl0631.42010MR904948
- Vega L. : Schrödinger equations, pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988) 874-878. Zbl0654.42014MR934859
- Yajima K. : On smoothing property of Schrödinger propagator, Lectures notes in Math. 1450 Springer Verlag (1990) 20-35. Zbl0725.35084MR1084599
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.