High frequency limit of Helmholtz equations: the case of a discontinuous index
- [1] UMPA, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France et IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
Journées Équations aux dérivées partielles (2006)
- page 1-19
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topFouassier, Elise. "High frequency limit of Helmholtz equations: the case of a discontinuous index." Journées Équations aux dérivées partielles (2006): 1-19. <http://eudml.org/doc/10622>.
@article{Fouassier2006,
abstract = {In this text, we compute the high frequency limit of the Hemholtz equation with source term, in the case of a refraction index that is discontinuous along a sharp interface between two unbounded media. The asymptotic propagation of energy is studied using Wigner measures.},
affiliation = {UMPA, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France et IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France},
author = {Fouassier, Elise},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-19},
publisher = {Groupement de recherche 2434 du CNRS},
title = {High frequency limit of Helmholtz equations: the case of a discontinuous index},
url = {http://eudml.org/doc/10622},
year = {2006},
}
TY - JOUR
AU - Fouassier, Elise
TI - High frequency limit of Helmholtz equations: the case of a discontinuous index
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 19
AB - In this text, we compute the high frequency limit of the Hemholtz equation with source term, in the case of a refraction index that is discontinuous along a sharp interface between two unbounded media. The asymptotic propagation of energy is studied using Wigner measures.
LA - eng
UR - http://eudml.org/doc/10622
ER -
References
top- S. Agmon, L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math., 30 (1976), 1-38. Zbl0335.35013MR466902
- J.D. Benamou, F.Castella, T. Katsaounis, B. Perthame, High frequency limit of the Helmholtz equation, Rev. Mat. Iberoamericana 18 (2002), no. 1, 187–209. Zbl1090.35165MR1924691
- F. Castella, B. Perthame, O. Runborg, High frequency limit of the Helmholtz equation. Source on a general manifold, Comm. P.D.E 3-4 (2002), 607-651. Zbl1290.35262MR1900556
- F. Castella, The radiation condition at infinity for the high frequency Helmholtz equation with source term: a wave packet approach, J. Funct. Anal. 223 (2005), no.1, 204-257. Zbl1072.35159MR2139886
- J. Dereziński, C. Gérard, Scattering theory of classical and quantum -particle systems, Texts and Monographs in Physics, Springer, Berlin, 1997. Zbl0899.47007MR1459161
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semiclassical limit, London Mathematical Society Lecture Notes Series, vol. 268, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
- E. Fouassier, Morrey-Campanato estimates for Helmholtz equations with two unbounded media, Proc. Roy. Soc. Edinburg Sect. A 135 (2005), no.4, 767-776. Zbl1148.35311MR2173338
- E. Fouassier, High frequency analysis of Helmholtz equations: refraction by sharp interfaces, to appear in Journal de Mathématiques Pures et APpliquées. Zbl1119.35096
- P. Gérard, Mesures semi-classiques et ondes de Bloch, In Séminaire Equations aux dérivées partielles 1988-1989, exp XVI, Ecole Polytechnique, Palaiseau (1988). Zbl0739.35096MR1131589
- P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71 (1993), 559-607. Zbl0788.35103MR1233448
- P. Gérard, P.A. Markowitch, N.J. Mauser, F. Poupaud, Homogeneisation limits and Wigner transforms, Comm. pure and Appl. Math., 50 (1997), 321-357. Zbl0881.35099
- C. Gérard, A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödingerà longue portée, C. R. Acad. Sci. Paris, Ser. I math, Vol 195, 3, 121-123 (1988). Zbl0672.35013
- L. Hörmander,The Analysis of Linear Partial Differential Operators I and III, Springer-Verlag. Zbl0601.35001
- L. Hörmander, Lecture Notes at the Nordic Summer School of mathematics (1968).
- P.-L. Lions, T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (3) (1993), 553-618. Zbl0801.35117MR1251718
- L. Miller, Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Doctorat de l’Ecole Polytechnique, Palaiseau (1996).
- L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl. (9) 79 (2000), 227–269. Zbl0963.35022MR1750924
- B. Perthame, L. Vega, Morrey-campanato estimates for the Helmholtz equation, J. Funct. Anal. 164(2) (1999), 340-355. Zbl0932.35048MR1695559
- X.P. Wang, P. Zhang, High frequency limit of the Helmholtz equation with variable index of refraction, Preprint (2004) Zbl1141.35016
- E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932) Zbl58.0948.07
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.