High frequency limit of Helmholtz equations: the case of a discontinuous index

Elise Fouassier[1]

  • [1] UMPA, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France et IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Journées Équations aux dérivées partielles (2006)

  • page 1-19
  • ISSN: 0752-0360

Abstract

top
In this text, we compute the high frequency limit of the Hemholtz equation with source term, in the case of a refraction index that is discontinuous along a sharp interface between two unbounded media. The asymptotic propagation of energy is studied using Wigner measures.

How to cite

top

Fouassier, Elise. "High frequency limit of Helmholtz equations: the case of a discontinuous index." Journées Équations aux dérivées partielles (2006): 1-19. <http://eudml.org/doc/10622>.

@article{Fouassier2006,
abstract = {In this text, we compute the high frequency limit of the Hemholtz equation with source term, in the case of a refraction index that is discontinuous along a sharp interface between two unbounded media. The asymptotic propagation of energy is studied using Wigner measures.},
affiliation = {UMPA, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France et IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France},
author = {Fouassier, Elise},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-19},
publisher = {Groupement de recherche 2434 du CNRS},
title = {High frequency limit of Helmholtz equations: the case of a discontinuous index},
url = {http://eudml.org/doc/10622},
year = {2006},
}

TY - JOUR
AU - Fouassier, Elise
TI - High frequency limit of Helmholtz equations: the case of a discontinuous index
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 19
AB - In this text, we compute the high frequency limit of the Hemholtz equation with source term, in the case of a refraction index that is discontinuous along a sharp interface between two unbounded media. The asymptotic propagation of energy is studied using Wigner measures.
LA - eng
UR - http://eudml.org/doc/10622
ER -

References

top
  1. S. Agmon, L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math., 30 (1976), 1-38. Zbl0335.35013MR466902
  2. J.D. Benamou, F.Castella, T. Katsaounis, B. Perthame, High frequency limit of the Helmholtz equation, Rev. Mat. Iberoamericana 18 (2002), no. 1, 187–209. Zbl1090.35165MR1924691
  3. F. Castella, B. Perthame, O. Runborg, High frequency limit of the Helmholtz equation. Source on a general manifold, Comm. P.D.E 3-4 (2002), 607-651. Zbl1290.35262MR1900556
  4. F. Castella, The radiation condition at infinity for the high frequency Helmholtz equation with source term: a wave packet approach, J. Funct. Anal. 223 (2005), no.1, 204-257. Zbl1072.35159MR2139886
  5. J. Dereziński, C. Gérard, Scattering theory of classical and quantum N -particle systems, Texts and Monographs in Physics, Springer, Berlin, 1997. Zbl0899.47007MR1459161
  6. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semiclassical limit, London Mathematical Society Lecture Notes Series, vol. 268, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
  7. E. Fouassier, Morrey-Campanato estimates for Helmholtz equations with two unbounded media, Proc. Roy. Soc. Edinburg Sect. A 135 (2005), no.4, 767-776. Zbl1148.35311MR2173338
  8. E. Fouassier, High frequency analysis of Helmholtz equations: refraction by sharp interfaces, to appear in Journal de Mathématiques Pures et APpliquées. Zbl1119.35096
  9. P. Gérard, Mesures semi-classiques et ondes de Bloch, In Séminaire Equations aux dérivées partielles 1988-1989, exp XVI, Ecole Polytechnique, Palaiseau (1988). Zbl0739.35096MR1131589
  10. P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71 (1993), 559-607. Zbl0788.35103MR1233448
  11. P. Gérard, P.A. Markowitch, N.J. Mauser, F. Poupaud, Homogeneisation limits and Wigner transforms, Comm. pure and Appl. Math., 50 (1997), 321-357. Zbl0881.35099
  12. C. Gérard, A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödingerà longue portée, C. R. Acad. Sci. Paris, Ser. I math, Vol 195, 3, 121-123 (1988). Zbl0672.35013
  13. L. Hörmander,The Analysis of Linear Partial Differential Operators I and III, Springer-Verlag. Zbl0601.35001
  14. L. Hörmander, Lecture Notes at the Nordic Summer School of mathematics (1968). 
  15. P.-L. Lions, T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (3) (1993), 553-618. Zbl0801.35117MR1251718
  16. L. Miller, Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Doctorat de l’Ecole Polytechnique, Palaiseau (1996). 
  17. L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl. (9) 79 (2000), 227–269. Zbl0963.35022MR1750924
  18. B. Perthame, L. Vega, Morrey-campanato estimates for the Helmholtz equation, J. Funct. Anal. 164(2) (1999), 340-355. Zbl0932.35048MR1695559
  19. X.P. Wang, P. Zhang, High frequency limit of the Helmholtz equation with variable index of refraction, Preprint (2004) Zbl1141.35016
  20. E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932) Zbl58.0948.07

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.