Mesures semi-classiques et ondes de Bloch

P. Gérard

Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)

  • page 1-19

How to cite


Gérard, P.. "Mesures semi-classiques et ondes de Bloch." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-19. <>.

author = {Gérard, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger equation; oscillation of solution},
language = {fre},
pages = {1-19},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Mesures semi-classiques et ondes de Bloch},
url = {},
year = {1990-1991},

AU - Gérard, P.
TI - Mesures semi-classiques et ondes de Bloch
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 19
LA - fre
KW - Schrödinger equation; oscillation of solution
UR -
ER -


  1. [BLP] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for periodic structures, North Holland, 1978. Zbl0404.35001MR503330
  2. [BFM] S. Brahim-Ostmane, G. Francfort, F. Murat, Correctors for the homogenization of the wave and heat équations, Publication Analyse Numérique, Paris VI, à paraître au J. Math. pures et appl. Zbl0837.35016
  3. [B] V.S. Buslaev, Semiclassical approximation for équations with periodic coefficients, Russian Math. Surveys, 42 (1987), 97-125. Zbl0698.35130MR933996
  4. [FKT] J. Feldman, H. Knôrrer, E. Trubowitz, The perturbatively stable spectrum of a periodic Schrôdinger operator, Inventiones Math.100 (1990), 259-300. Zbl0701.34082MR1047135
  5. [FM] G. Francfort, F. Murat, Oscillations and Energy Densities in the wave equation, à paraître. Zbl0803.35010
  6. [CG] C. Gérard, Résonance Theory for periodic Schrôdinger Operators, Bull. Soc. Math. France, 118 (1990), 27-54. Zbl0723.35059MR1077086
  7. [GMS] C. Gérard, A. Martinez, J. Sjôstrand, A Mathematical Approach to the Effective Hamiltonian in Perturbed Periodic Problems, Prépublication Orsay et article à paraître. Zbl0753.35057
  8. [PG1] P. Gérard, Compacité par compensation et régularité deux-microlocale, Séminaire Equations aux Dérivées Partielles 1988-1989, Ecole Polytechnique. Zbl0707.35032MR1032282
  9. [PG2] P. Gérard, Microlocal Defect Measures, à paraître aux Comm. Part. Diff. Equations. Zbl0770.35001
  10. [PG3] P. Gérard, Microlocal Analysis of Compactness, Séminaire de Mathématiques Appliquées 1989-1990, Collège de France, à paraître. Zbl0808.35005
  11. [GRT] J.C. Guillot, J. Ralston, E. Trubowitz, Semi-classical Approximations in solid State Physics, Comm. Math. Phys.116 (1988), 401-415. Zbl0672.35014MR937768
  12. [KT] H. Knôrrer, E. Trubowitz, A directional compactification of the complex Bloch variety, Comm. Math. Helvetici65 (1990), 114-149. Zbl0723.32006MR1036133
  13. [R] D. Robert, Autour de l'approximation semi-classique, Progress in Mathematics n°68, Birkhaüser,1987. Zbl0621.35001MR897108
  14. [T] L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Ed., 114A (1990). Zbl0774.35008MR1069518
  15. [W] C.H. Wilcox, Theory of Bloch waves, Journal d'Analyse Mathématique, 33 (1978), 146-167. Zbl0408.35067MR516045

Citations in EuDML Documents

  1. Patrick Gérard, Eric Leichtnam, Ergodicité de fonctions propres pour des problèmes aux limites
  2. Patrick Gérard, Résultats de propagation pour les équations aux dérivées partielles à coefficients oscillants
  3. Patrick Gérard, Éric Leichtnam, Équirépartition de fonctions propres pour des problèmes aux limites
  4. Peter A. Markowich, Norbert J. Mauser, Frédéric Poupaud, Wigner series and (semi)classical limits with periodic potentials
  5. P. A. Markowich, F. Poupaud, The Maxwell equation in a periodic medium : homogenization of the energy density
  6. Carlos Conca, M. Vanninathan, Fourier approach to homogenization problems
  7. Fanghua Lin, Ping Zhang, Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle
  8. Carlos Conca, M. Vanninathan, Fourier approach to homogenization problems
  9. F. Nier, Une description semi-classique de la diffusion quantique
  10. Sébastien Breteaux, A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.