Un nouveau regard sur l’estimation de Mourre
- [1] Departement of Mathematical Methods in Physics Warsaw University Hoża 74 00-682 Warszawa, Poland
Journées Équations aux dérivées partielles (2006)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- W.O. Amrein, A. Boutet de Monvel and V. Georgescu : -groups, commutator methods and spectral theory of -body hamiltonians., Birkhäuser 1996. Zbl0962.47500MR1388037
- J-F. Bony, R. Carles, D. Haeffner, L. Michel : Scattering theory for the Schrödinger equation with repulsive potential. J. Math. Pures Appl. 84, no. 5, 509-579, 2005. Zbl1082.35130MR2134848
- N. Burq : Semiclassical estimates for the resolvent in non trapping geometries. Int. Math. Res. Notices 2002, no 5, 221–241. Zbl1161.81368MR1876933
- F. Castella, Th. Jecko : Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and potential. To appear in J. Diff. Eq. Zbl1105.35091MR2289541
- L. Cattaneo, G. M. Graf and W. Hunziker : A general resonance theory based on Mourre’s inequality, math-ph/0507063.
- J. Dereziński and C. Gérard : Scattering theory of classical and quantum N-particle systems. Springer-Verlag 1997. Zbl0899.47007MR1459161
- J. Dereziński and V. Jakšić : Spectral theory of Pauli-Fierz operators. J. Funct. Anal. 180, no 2, pp. 243-327, 2001. Zbl1034.81016MR1814991
- V. Georgescu and C. Gérard : On the Virial Theorem in Quantum Mechanics, Commun. Math. Phys. 208, 275–281, (1999). Zbl0961.81009MR1729087
- V. Georgescu, C. Gérard, and J.S. Møller : Commutators, -semigroups and resolvent estimates, J. Funct. Anal. 216, no 2, pp. 303-361, 2004. Zbl1073.47518MR2095686
- V. Georgescu, C. Gérard, and J.S. Møller : Spectral theory of massless Pauli-Fierz models, Comm. Math. Phys. 249, no 1, pp. 29-78, 2004. Zbl1091.81059MR2077252
- V. Georgescu, S. Golénia : Isometries, Fock spaces and spectral analysis of Schrödinger operators on trees., Journal of Functional Analysis 227 (2005), 389-429. Zbl1106.47006MR2168080
- S. Golénia, T. Jecko : A new look at Mourre’s commutator theorem., preprint mp_arc 06-138, submitted to publication.
- B. Helffer and J. Sjöstrand : Opérateurs de Schrödinger avec champs magnétiques faibles et constants. Exposé No. XII, Séminaire EDP, février 1989, Ecole Polytechnique. Zbl0702.35185MR1032288
- W. Hunziker and I.M. Sigal : The quantum -body problem, J. Math. Phys. 41 (6), 3448–3510, 2000. Zbl0981.81026MR1768629
- Th. Jecko : From classical to semiclassical non-trapping behaviour, C. R. Acad. Sci. Paris, Ser. I, 338, p. 545–548, 2004. Zbl1046.81037MR2057027
- Th. Jecko : Non-trapping condition for semiclassical Schrödinger operators with matrix-valued potentials. Math. Phys. Electronic Journal, No. 2, vol. 11, 2005. Zbl1067.81037MR2122361
- E. Mourre : Absence of singular continuous spectrum for certain self-adjoint operators. Commun. in Math. Phys. 78, 391–408, 1981. Zbl0489.47010MR603501
- M. Reed, B. Simon : Methods of Modern Mathematical Physics, Tome IV : Analysis of operators. Academic Press. Zbl0401.47001
- J. Sahbani :The conjugate operator method for locally regular Hamiltonians. J. Oper. Theory 38, No. 2, 297–322 (1997). Zbl0905.47003MR1606944