Perturbation de la dynamique des équations des ondes amorties

Romain Joly[1]

  • [1] Université Paris Sud, Analyse Numérique et EDP, UMR CNRS 8628, Bâtiment 425, F-91405 Orsay Cedex, France

Journées Équations aux dérivées partielles (2006)

  • page 1-16
  • ISSN: 0752-0360

How to cite

top

Joly, Romain. "Perturbation de la dynamique des équations des ondes amorties." Journées Équations aux dérivées partielles (2006): 1-16. <http://eudml.org/doc/10624>.

@article{Joly2006,
affiliation = {Université Paris Sud, Analyse Numérique et EDP, UMR CNRS 8628, Bâtiment 425, F-91405 Orsay Cedex, France},
author = {Joly, Romain},
journal = {Journées Équations aux dérivées partielles},
language = {fre},
month = {6},
pages = {1-16},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Perturbation de la dynamique des équations des ondes amorties},
url = {http://eudml.org/doc/10624},
year = {2006},
}

TY - JOUR
AU - Joly, Romain
TI - Perturbation de la dynamique des équations des ondes amorties
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/10624
ER -

References

top
  1. S.B. Angenent, The Morse-Smale property for a semilinear parabolic equation, Journal of Differential Equations no 62 (1986), pp 427-442. Zbl0581.58026MR837763
  2. K. Ammari et M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM Control, Optimisation and Calculus of Variations no 6 (2001), pp 361-386. Zbl0992.93039MR1836048
  3. J.M. Arrieta, J.K. Hale et Q. Han, Eigenvalue problems for nonsmoothly perturbed domains, Journal of Differential Equations no 91 (1991), pp. 24-52. Zbl0736.35073MR1106116
  4. A.V. Babin et M.I. Vishik, Uniform asymptotic solutions of a singularly perturbed evolutionary equation, Journal de Mathématiques Pures et Appliquées no 68 (1989), pp 399-455. Zbl0717.35009MR1046760
  5. A.V. Babin et M.I. Vishik, Attractors of evolution equations, Studies in Mathematics and its Applications no 25 (1992), North-Holland. Zbl0778.58002MR1156492
  6. H.T. Banks, K. Ito et C. Wang, Exponential stable approximations of weakly damped wave equations, Estimation and control of distributed parameter systems (Vorau 1990), vol. 100 of Internat. Ser. Numer. Math. (1991), pp. 1-33, Birkäuser, Basel. Zbl0850.93719MR1155634
  7. C. Bardos, G. Lebeau et J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization no 30 (1992), pp. 1024-1065. Zbl0786.93009MR1178650
  8. P. Brunovský et P. Polàčik, The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension, Journal of Differential Equations no 135 (1997), pp. 129-181. Zbl0868.35062MR1434918
  9. P. Brunovský et G. Raugel, Genericity of the Morse-Smale property for damped wave equations, Journal of Dynamics and Differential Equations no 15 (2003), pp. 571-658. Zbl1053.35099MR2046732
  10. I. Chueshov, M. Eller et I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Communications in Partial Differential Equations no 27 (2002), pp 1901-1951. Zbl1021.35020MR1941662
  11. S. Cox et E. Zuazua, The rate at which energy decays in a string damped at one end, Indiana University Mathematics Journal no 44 (1995), pp. 545-573. Zbl0847.35078MR1355412
  12. I.S. Ciuperca, Spectral properties of Schrödinger operators on domains with varying order of thinness, Journal of Dynamics and Differential Equations no 10 (1998), pp. 73-108. Zbl0897.35053MR1607535
  13. C.M. Elliot et A.M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM Journal of Numerical Analysis no 30 (1993), pp. 1622-1663. Zbl0792.65066MR1249036
  14. C. Fabre et J.P. Puel, Pointwise controllability as limit of internal controllability for the wave equation in one space dimension, Portugaliae Mathematica no 51 (1994), pp 335-350. Zbl0814.35066MR1295205
  15. R. Glowinski, C.H. Li et J-L. Lions, A numerical approach to the exact boundary controllability of the wave equation, Japan Journal of Applied Mathematics no 7 (1990), pp. 1-76. Zbl0699.65055MR1039237
  16. J.K. Hale, Asymptotic behavior of dissipative systems, Mathematical Survey no 25 (1988), American Mathematical Society. Zbl0642.58013MR941371
  17. J.K. Hale, Numerical dynamics, chaotic numerics (Geelong, 1993), Contemporary Mathematics no 172, American Mathematical Society (1994). Zbl0808.34061MR1294406
  18. J.K. Hale, X.B. Lin et G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Mathematics of Computation no 50 (1988), pp 89-123. Zbl0666.35013MR917820
  19. J.K. Hale, L. Magalhães et W. Oliva, An introduction to infinite dimensional dynamical systems, Applied Mathematical Sciences no 47 (1984), Springer-Verlag. Seconde édition (2002), Dynamics in infinite dimensions. Zbl0533.58001MR1914080
  20. J.K. Hale et G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Annali di Matematica Pura ed Applicata (IV) no CLIV (1989), pp 281-326. Zbl0712.47053MR1043076
  21. J.K. Hale et G. Raugel, Attractors for dissipative evolutionary equations, International Conference on Differential Equations vol 1, 2 (1991) World Sci. Publishing, pp. 3-22. Zbl0938.34536MR1242226
  22. J.K. Hale et G. Raugel, Reaction-diffusion equations on thin domains, Journal de Mathématiques Pures et Appliquées no 71 (1992), pp. 33-95. Zbl0840.35044MR1151557
  23. J.K. Hale et G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proceedings of the Royal Society of Edimburgh no 125A (1995), pp. 283-327. Zbl0828.35055MR1331562
  24. A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugaliae Mathematica no 46 (1989), pp 246-257. Zbl0679.93063MR1021188
  25. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics no 840 (1981), Springer-Verlag. Zbl0456.35001MR610244
  26. D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, Journal of Differential Equations no 59 (1985), pp. 165-205. Zbl0572.58012MR804887
  27. J.A. Infante et E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation, M2AN Mathematical Modelling and Numerical Analysis no 33 (1999), pp. 407-438. Zbl0947.65101MR1700042
  28. R. Joly, Dynamique des équations des ondes avec amortissement variable, thèse (Orsay, 2005). 
  29. R. Joly, Generic transversality property for a class of wave equations with variable damping, Journal de Mathématiques Pures et Appliquées no 84 (2005), pp. 1015-1066. Zbl1082.35109MR2155898
  30. R. Joly, Convergence of the wave equation damped on the interior to the one damped on the boundary, à paraître dans le Journal of Differential Equations. Zbl1122.35010
  31. M. Kazeni et M.V. Klibanov, Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities, Applicable Analysis no 50 (1993), pp. 93-102. Zbl0795.35134MR1281205
  32. V. Komornik et E. Zuazua, A direct method for the boundary stabilization of the wave equation, Journal de Mathématiques Pures et Appliquées no 69 (1990), pp 33-55. Zbl0636.93064MR1054123
  33. I. Lasiecka et D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations vol 6 (1993), pp 507-533. Zbl0803.35088MR1202555
  34. I. Lasiecka, R. Triggiani et X. Zhang, Nonconservative wave equations with unobserved Neumann B.C. : global uniqueness and observability in one shot, Contemporary Mathematics no 268 (2000), pp. 227-325. Zbl1096.93503MR1804797
  35. Z. Liu et S. Zheng, Semigroups associated with dissipative systems, Chapman and Hall/CRC Resarch Notes in Mathematics no 398 (1999). Zbl0924.73003MR1681343
  36. J. Palis, On Morse-Smale dynamical systems, Topology no 8 (1968), pp. 385-404. Zbl0189.23902MR246316
  37. J. Palis et S. Smale, Structural stability theorems, Global Analysis (Berkeley, 1968), pp. 223–231, Proc. Sympos. Pure Math. no 14, American Mathematical Society (1970). Zbl0214.50702MR267603
  38. M. Prizzi et K.P. Rybakowski, Inertial manifolds on squeezed domains, Journal of Dynamics and Differential Equations no 15 (2003), pp. 1-48. Zbl1036.35042MR2016907
  39. K. Ramdani, T. Takahashi et M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations, prépublication. Zbl1126.93050
  40. J. Rauch, Qualitative behavior of dissipative wave equations on bounded domains, Archive for Rational Mechanics and Analysis vol 62 (1976), pp. 77-85. Zbl0335.35062MR404864
  41. G. Raugel, chapitre 17 de Handbook of dynamical systems vol.2 (2002), edité par B. Fiedler, Elsevier Science. 
  42. G. Raugel, Dynamics of Partial Differential Equations on Thin Domains, CIME Course, Montecatini Terme, Lecture Notes in Mathematics no 1609 (1995), pp. 208-315, Springer Verlag. Zbl0851.58038MR1374110
  43. A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, Journal de Mathématiques Pures et Appliquées no 71 (1992), pp 455-467. Zbl0832.35084MR1191585
  44. A.M. Stuart, Convergence and stability in the numerical approximation of dynamical systems, The state of the art in numerical analysis (York, 1996), Inst. Math. Appl. Conf. Ser. New Ser. no 63, pp. 145-169, Oxford Univ. Press, New York, 1997. Zbl0884.65069MR1628345
  45. A.M. Stuart et A.R. Humphries, Dynamical systems and numerical analysis, Cambridge Monographs on Applied and Computational Mathematics no 2 (1996), Cambridge University Press, Cambridge. Zbl0869.65043MR1402909
  46. D. Tataru, Uniform decay rates and attractors for evolution PDE’s with boundary dissipation, Journal of Differential Equations no 121 (1995), pp. 1-27. Zbl0831.35022
  47. L. Tcheougoué Tebou et E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numerische Mathematik no 95(2003), pp. 563-598. Zbl1033.65080MR2012934
  48. E. Yanagida, Existence of stable stationary solutions of scalar reaction-diffusion equations in thin tubular domains, Applicable Analysis no 36 (1990), pp. 171-188. Zbl0709.35044MR1048959
  49. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping Communications in Partial Differential Equations no 15 (1990), pp. 205-235. Zbl0716.35010MR1032629
  50. E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM Journal on Control and Optimization no 28 (1990), pp. 466-477. Zbl0695.93090MR1040470
  51. E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square, Journal de Mathématiques Pures et Appliquées no 78 (1999), pp. 523-563. Zbl0939.93016MR1697041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.