Stabilization of second order evolution equations by a class of unbounded feedbacks
ESAIM: Control, Optimisation and Calculus of Variations (2001)
- Volume: 6, page 361-386
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAmmari, Kais, and Tucsnak, Marius. "Stabilization of second order evolution equations by a class of unbounded feedbacks." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 361-386. <http://eudml.org/doc/90598>.
@article{Ammari2001,
abstract = {In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.},
author = {Ammari, Kais, Tucsnak, Marius},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {stabilization; observability inequality; second order evolution equations; unbounded feedbacks; stabilization by feedback; infinite dimensional systems; controllability; observability; exponential stability; decay rate},
language = {eng},
pages = {361-386},
publisher = {EDP-Sciences},
title = {Stabilization of second order evolution equations by a class of unbounded feedbacks},
url = {http://eudml.org/doc/90598},
volume = {6},
year = {2001},
}
TY - JOUR
AU - Ammari, Kais
AU - Tucsnak, Marius
TI - Stabilization of second order evolution equations by a class of unbounded feedbacks
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 361
EP - 386
AB - In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
LA - eng
KW - stabilization; observability inequality; second order evolution equations; unbounded feedbacks; stabilization by feedback; infinite dimensional systems; controllability; observability; exponential stability; decay rate
UR - http://eudml.org/doc/90598
ER -
References
top- [1] K. Ammari and M. Tucsnak, Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force. SIAM. J. Control Optim. 39 (2000) 1160-1181. Zbl0983.35021
- [2] K. Ammari, A. Henrot and M. Tucsnak, Optimal location of the actuator for the pointwise stabilization of a string. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 275-280. Zbl0949.35083MR1753293
- [3] A. Bamberger, J. Rauch and M. Taylor, A model for harmonics on stringed instruments. Arch. Rational Mech. Anal. 79 (1982) 267-290. Zbl0534.47027MR656795
- [4] C. Bardos, L. Halpern, G. Lebeau, J. Rauch and E. Zuazua, Stabilisation de l’équation des ondes au moyen d’un feedback portant sur la condition aux limites de Dirichlet. Asymptot. Anal. 4 (1991) 285-291. Zbl0764.35055
- [5] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. Zbl0786.93009MR1178650
- [6] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite Dimensional Systems, Vol. I. Birkhauser (1992). Zbl0781.93002MR1246331
- [7] J.W.S. Cassals, An introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1966). Zbl0077.04801
- [8] G. Doetsch, Introduction to the theory and application of the Laplace transformation. Springer, Berlin (1974). Zbl0278.44001MR344810
- [9] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math. 46 (1989) 245-258. Zbl0679.93063MR1021188
- [10] A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41 (1936) 367-369. Zbl0014.21503MR1545625
- [11] S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. Zbl0920.35029MR1620290
- [12] V. Komornik, Rapid boundary stabilization of linear distributed systems. SIAM J. Control Optim. 35 (1997) 1591-1613. Zbl0889.35013MR1466918
- [13] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33-54. Zbl0636.93064MR1054123
- [14] J. Lagnese, Boundary stabilization of thin plates. Philadelphia, SIAM Stud. Appl. Math. (1989). Zbl0696.73034MR1061153
- [15] S. Lang, Introduction to diophantine approximations. Addison Wesley, New York (1966). Zbl0144.04005MR209227
- [16] J.L. Lions, Contrôlabilité exacte des systèmes distribués. Masson, Paris (1998). MR953547
- [17] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Zbl0165.10801MR247243
- [18] F.W.J. Olver, Asymptotic and Special Functions. Academic Press, New York. Zbl0303.41035
- [19] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer, New York (1983). Zbl0516.47023MR710486
- [20] R. Rebarber, Exponential stability of beams with dissipative joints: A frequency approach. SIAM J. Control Optim. 33 (1995) 1-28. Zbl0819.93042MR1311658
- [21] L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal. 10 (1995) 95-115. Zbl0882.35015MR1324385
- [22] D.L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods. J. Differential Equations 19 (1975) 344-370. Zbl0326.93018MR425291
- [23] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent and open questions. SIAM Rev. 20 (1978) 639-739. Zbl0397.93001MR508380
- [24] H. Triebel, Interpolation theory, function spaces, differential operators. North Holland, Amsterdam (1978). Zbl0387.46032MR503903
- [25] M. Tucsnak, Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34 (1996) 922-930. Zbl0853.73051MR1384960
- [26] M. Tucsnak and G. Weiss, How to get a conservative well posed linear system out of thin air. Preprint. Zbl1125.93383
- [27] G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press. Zbl0174.36202MR1349110JFM48.0412.02
- [28] G. Weiss, Regular linear systems with feedback. Math. Control Signals Systems 7 (1994) 23-57. Zbl0819.93034MR1359020
Citations in EuDML Documents
top- Kaïs Ammari, Mohamed Jellouli, Remark on stabilization of tree-shaped networks of strings
- Kaïs Ammari, Mouez Dimassi, Weyl formula with optimal remainder estimate of some elastic networks and applications
- Bao-Zhu Guo, Zhi-Xiong Zhang, On the well-posedness and regularity of the wave equation with variable coefficients
- Serge Nicaise, Julie Valein, Stabilization of second order evolution equations with unbounded feedback with delay
- Romain Joly, Perturbation de la dynamique des équations des ondes amorties
- Farah Abdallah, Serge Nicaise, Julie Valein, Ali Wehbe, Uniformly exponentially or polynomially stable approximations for second order evolution equations and some applications
- Ammar Moulahi, Salsabil Nouira, Stabilisation polynomiale et analytique de l’équation des ondes sur un rectangle
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.