Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations
- [1] Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637-1514, USA
Journées Équations aux dérivées partielles (2007)
- page 1-35
- ISSN: 0752-0360
Access Full Article
topHow to cite
topKenig, Carlos E.. "Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations." Journées Équations aux dérivées partielles (2007): 1-35. <http://eudml.org/doc/10628>.
@article{Kenig2007,
affiliation = {Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637-1514, USA},
author = {Kenig, Carlos E.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-35},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations},
url = {http://eudml.org/doc/10628},
year = {2007},
}
TY - JOUR
AU - Kenig, Carlos E.
TI - Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations
JO - Journées Équations aux dérivées partielles
DA - 2007/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 35
LA - eng
UR - http://eudml.org/doc/10628
ER -
References
top- H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics 121 (1999), 131-175 Zbl0919.35089MR1705001
- Hajer Bahouri, Jalal Shatah, Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 783-789 Zbl0924.35084MR1650958
- J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equations in the radial case, J. Amer. Math. Soc. 12 (1999), 145-171 Zbl0958.35126MR1626257
- T. Cazenave, F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Analysis, Theory, Methods and Applications (1990), 807-836 Zbl0706.35127MR1055532
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. of Math. (2) 167 (2008), 767-865 Zbl1178.35345MR2415387
- Damiano Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ. 2 (2005), 1-24 Zbl1071.35025MR2134950
- Patrick Gerard, Yves Meyer, Frédérique Oru, Inégalités de Sobolev précisées, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997 (1997), École Polytech., Palaiseau Zbl1066.46501MR1482810
- Yoshikazu Giga, Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884 Zbl0703.35020MR1003437
- J. Ginibre, A. Soffer, G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110 (1992), 96-130 Zbl0813.35054MR1190421
- J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, Journal of Functional Analysis 1 (1995), 50-68 Zbl0849.35064MR1351643
- R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797 Zbl0372.35009MR460850
- Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), 485-509 Zbl0736.35067MR1078267
- L. Hörmander, The Analysis of Linear Partial Differential Operators III, 274 (1985), Springer Verlag Zbl0601.35001MR781536
- Lev Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett. 1 (1994), 211-223 Zbl0841.35067MR1266760
- M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. Jour. of Math. (1998), 955-980 Zbl0922.35028MR1646048
- Carlos E. Kenig, Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645-675 Zbl1115.35125MR2257393
- Carlos E. Kenig, Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear wave equation, To appear, Acta Math. (2008) Zbl1183.35202MR2461508
- Carlos E. Kenig, Frank Merle, Scattering for the bounded solutions to the cubic defocusing NLS in dimensions, To appear, Trans. A.M.S. (2008) Zbl1188.35180MR2574882
- Carlos E. Kenig, Gustavo Ponce, Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620 Zbl0808.35128MR1211741
- Sahbi Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), 353-392 Zbl1038.35119MR1855973
- J. Krieger, W. Schlag, D. Tataru, Slow blow-up solutions for the critical focusing semi-linear wave equation in , arxiv:math.AP/0711.1818 (2007) Zbl1170.35066MR2494455
- Howard A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form , Trans. Amer. Math. Soc. 192 (1974), 1-21 Zbl0288.35003MR344697
- Frank Merle, Hatem Zaag, Determination of the blow-up rate for a critical semilinear wave equation, Math. Ann. 331 (2005), 395-416 Zbl1136.35055MR2115461
- Pierre Raphaël, Existence and stability of a solution blowing up on a sphere for an -supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), 199-258 Zbl1117.35077MR2248831
- E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in , Amer. J. Math. 129 (2007), 1-60 Zbl1160.35067MR2288737
- Jalal Shatah, Michael Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices (1994) Zbl0830.35086MR1283026
- Jalal Shatah, Michael Struwe, Geometric wave equations, 2 (1998), New York University Courant Institute of Mathematical Sciences, New York Zbl0993.35001MR1674843
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714 Zbl0372.35001MR512086
- Michael Struwe, Globally regular solutions to the Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 495-513 (1989) Zbl0728.35072MR1015805
- Terence Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math. 11 (2005), 57-80 (electronic) Zbl1119.35092MR2154347
- Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-274 Zbl0159.23801MR240748
- M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), 2123-2136 (electronic) Zbl1196.35074MR2276614
- Monica Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), 281-374 Zbl1131.35081MR2318286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.