Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations

Carlos E. Kenig[1]

  • [1] Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637-1514, USA

Journées Équations aux dérivées partielles (2007)

  • page 1-35
  • ISSN: 0752-0360

How to cite

top

Kenig, Carlos E.. "Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations." Journées Équations aux dérivées partielles (2007): 1-35. <http://eudml.org/doc/10628>.

@article{Kenig2007,
affiliation = {Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637-1514, USA},
author = {Kenig, Carlos E.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-35},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations},
url = {http://eudml.org/doc/10628},
year = {2007},
}

TY - JOUR
AU - Kenig, Carlos E.
TI - Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations
JO - Journées Équations aux dérivées partielles
DA - 2007/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 35
LA - eng
UR - http://eudml.org/doc/10628
ER -

References

top
  1. H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics 121 (1999), 131-175 Zbl0919.35089MR1705001
  2. Hajer Bahouri, Jalal Shatah, Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 783-789 Zbl0924.35084MR1650958
  3. J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equations in the radial case, J. Amer. Math. Soc. 12 (1999), 145-171 Zbl0958.35126MR1626257
  4. T. Cazenave, F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Analysis, Theory, Methods and Applications (1990), 807-836 Zbl0706.35127MR1055532
  5. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in 3 , Ann. of Math. (2) 167 (2008), 767-865 Zbl1178.35345MR2415387
  6. Damiano Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ. 2 (2005), 1-24 Zbl1071.35025MR2134950
  7. Patrick Gerard, Yves Meyer, Frédérique Oru, Inégalités de Sobolev précisées, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997 (1997), École Polytech., Palaiseau Zbl1066.46501MR1482810
  8. Yoshikazu Giga, Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884 Zbl0703.35020MR1003437
  9. J. Ginibre, A. Soffer, G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110 (1992), 96-130 Zbl0813.35054MR1190421
  10. J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, Journal of Functional Analysis 1 (1995), 50-68 Zbl0849.35064MR1351643
  11. R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797 Zbl0372.35009MR460850
  12. Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), 485-509 Zbl0736.35067MR1078267
  13. L. Hörmander, The Analysis of Linear Partial Differential Operators III, 274 (1985), Springer Verlag Zbl0601.35001MR781536
  14. Lev Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett. 1 (1994), 211-223 Zbl0841.35067MR1266760
  15. M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. Jour. of Math. (1998), 955-980 Zbl0922.35028MR1646048
  16. Carlos E. Kenig, Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645-675 Zbl1115.35125MR2257393
  17. Carlos E. Kenig, Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear wave equation, To appear, Acta Math. (2008) Zbl1183.35202MR2461508
  18. Carlos E. Kenig, Frank Merle, Scattering for the H ˙ 1 / 2 bounded solutions to the cubic defocusing NLS in 3 dimensions, To appear, Trans. A.M.S. (2008) Zbl1188.35180MR2574882
  19. Carlos E. Kenig, Gustavo Ponce, Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620 Zbl0808.35128MR1211741
  20. Sahbi Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), 353-392 Zbl1038.35119MR1855973
  21. J. Krieger, W. Schlag, D. Tataru, Slow blow-up solutions for the H 1 ( 3 ) critical focusing semi-linear wave equation in 3 , arxiv:math.AP/0711.1818 (2007) Zbl1170.35066MR2494455
  22. Howard A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form P u t t = - A u + ( u ) , Trans. Amer. Math. Soc. 192 (1974), 1-21 Zbl0288.35003MR344697
  23. Frank Merle, Hatem Zaag, Determination of the blow-up rate for a critical semilinear wave equation, Math. Ann. 331 (2005), 395-416 Zbl1136.35055MR2115461
  24. Pierre Raphaël, Existence and stability of a solution blowing up on a sphere for an L 2 -supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), 199-258 Zbl1117.35077MR2248831
  25. E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in 1 + 4 , Amer. J. Math. 129 (2007), 1-60 Zbl1160.35067MR2288737
  26. Jalal Shatah, Michael Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices (1994) Zbl0830.35086MR1283026
  27. Jalal Shatah, Michael Struwe, Geometric wave equations, 2 (1998), New York University Courant Institute of Mathematical Sciences, New York Zbl0993.35001MR1674843
  28. Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714 Zbl0372.35001MR512086
  29. Michael Struwe, Globally regular solutions to the u 5 Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 495-513 (1989) Zbl0728.35072MR1015805
  30. Terence Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math. 11 (2005), 57-80 (electronic) Zbl1119.35092MR2154347
  31. Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-274 Zbl0159.23801MR240748
  32. M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), 2123-2136 (electronic) Zbl1196.35074MR2276614
  33. Monica Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), 281-374 Zbl1131.35081MR2318286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.