Decay estimates for the critical semilinear wave equation
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 6, page 783-789
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBahouri, Hajer, and Shatah, Jalal. "Decay estimates for the critical semilinear wave equation." Annales de l'I.H.P. Analyse non linéaire 15.6 (1998): 783-789. <http://eudml.org/doc/78456>.
@article{Bahouri1998,
author = {Bahouri, Hajer, Shatah, Jalal},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global space-time estimate; Cauchy problem; finite energy solution; dilation identity},
language = {eng},
number = {6},
pages = {783-789},
publisher = {Gauthier-Villars},
title = {Decay estimates for the critical semilinear wave equation},
url = {http://eudml.org/doc/78456},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Bahouri, Hajer
AU - Shatah, Jalal
TI - Decay estimates for the critical semilinear wave equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 6
SP - 783
EP - 789
LA - eng
KW - global space-time estimate; Cauchy problem; finite energy solution; dilation identity
UR - http://eudml.org/doc/78456
ER -
References
top- [1] H. Bahouri, P. Gerard, Private communications.
- [2] J. Ginibre, A. Soffer, G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Func. Analysis, Vol. 110, 1992, pp. 96-130. Zbl0813.35054MR1190421
- [3] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Zeit., Vol. 189, 1985, pp. 487-505. Zbl0549.35108MR786279
- [4] M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math., Vol. 132, 1990, pp. 485-509. Zbl0736.35067MR1078267
- [5] K. Jörgen, Das Anfangswertproblem in Grossen für eine Klasse nichtlinearer wellengleichunger, Math. Zeit., Vol. 77, 1961, pp. 295-308. Zbl0111.09105MR130462
- [6] J. Rauch, The u5 Klein-Gordon equation, Nonlinear PDE's and Applications. Pitman Research Notes in Math., Vol. 53, pp. 335-364. Zbl0473.35055MR631403
- [7] I.E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France, Vol. 91, 1963, pp. 129-135. Zbl0178.45403MR153967
- [8] J. Shatah, M. Struwe, Regularity results for nonlinear wave equation, Ann. of Math., Vol. 138, 1993, pp. 503-518. Zbl0836.35096MR1247991
- [9] J. Shatah, M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, Vol. 7, 1994, pp. 303-309. Zbl0830.35086MR1283026
- [10] W. Strauss, Decay and asymptotics for ⊑u = F(u), J. Funct. Anal., Vol. 2, 1968, pp. 405-457. Zbl0182.13602MR233062
- [11] W. Strauss, Nonlinear invariant wave equations, Lecture Notes in Physics, Vol. 23, 1978, 197-249, Springer, New York. MR498955
- [12] W.A. Strauss, Nonlinear scattering theory of low energy, J. Funct. Anal., Vol. 41, 1981, pp. 110-133. Zbl0466.47006MR614228
- [13] R.S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. A.M.S., Vol. 148, 1970, pp. 461-471. Zbl0199.17502MR256219
- [14] R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Vol. 44, 1977, pp. 705-714. Zbl0372.35001MR512086
- [15] M. Struwe, Globally regular solutions to the u5 Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, Vol. 15, 1988, pp. 495-513. Zbl0728.35072MR1015805
- [16] C. Zuily, Solutions en grand temps d' equations d' ondes non linéaresSéminaire BouBaki, 46ème année, 1993–94, n° 779. Zbl0830.35088
Citations in EuDML Documents
top- Matthew D. Blair, Hart F. Smith, Christopher D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary
- Gilles Lebeau, Optique non linéaire et ondes sur critiques
- Slim Ibrahim, Mohamed Majdoub, Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables
- Carlos E. Kenig, Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations
- Mohamed Madjoub, Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace
- Pierre Germain, Solutions globales d’énergie infinie pour l’équation des ondes critique
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.