Mathematics of Invisibility
Allan Greenleaf[1]; Yaroslav Kurylev[2]; Matti Lassas[3]; Gunther Uhlmann[4]
- [1] Department of Mathematics, University of Rochester, Rochester, NY 14627, USA. Partially supported by NSF grant DMS-0551894.
- [2] Department of Mathematics, University College London, Gower Street, London, WC1E 5BT, UK
- [3] Helsinki University of Technology, Institute of Mathematics, P.O.Box 1100, FIN-02015, Finland. Partially supported by Academy of Finland CoE Project 213476.
- [4] Department of Mathematics, University of Washington, Seattle, WA 98195, USA. Partially supported by the NSF and a Walker Family Endowed Professorship.
Journées Équations aux dérivées partielles (2007)
- Volume: 275, Issue: 3, page 1-11
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topGreenleaf, Allan, et al. "Mathematics of Invisibility." Journées Équations aux dérivées partielles 275.3 (2007): 1-11. <http://eudml.org/doc/10632>.
@article{Greenleaf2007,
abstract = {We will describe recent some of the recent theoretical progress on making objects invisible to electromagnetic waves based on singular transformations.},
affiliation = {Department of Mathematics, University of Rochester, Rochester, NY 14627, USA. Partially supported by NSF grant DMS-0551894.; Department of Mathematics, University College London, Gower Street, London, WC1E 5BT, UK; Helsinki University of Technology, Institute of Mathematics, P.O.Box 1100, FIN-02015, Finland. Partially supported by Academy of Finland CoE Project 213476.; Department of Mathematics, University of Washington, Seattle, WA 98195, USA. Partially supported by the NSF and a Walker Family Endowed Professorship.},
author = {Greenleaf, Allan, Kurylev, Yaroslav, Lassas, Matti, Uhlmann, Gunther},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
number = {3},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Mathematics of Invisibility},
url = {http://eudml.org/doc/10632},
volume = {275},
year = {2007},
}
TY - JOUR
AU - Greenleaf, Allan
AU - Kurylev, Yaroslav
AU - Lassas, Matti
AU - Uhlmann, Gunther
TI - Mathematics of Invisibility
JO - Journées Équations aux dérivées partielles
DA - 2007/6//
PB - Groupement de recherche 2434 du CNRS
VL - 275
IS - 3
SP - 1
EP - 11
AB - We will describe recent some of the recent theoretical progress on making objects invisible to electromagnetic waves based on singular transformations.
LA - eng
UR - http://eudml.org/doc/10632
ER -
References
top- K. Astala and L. Päivärinta: Calderón’s inverse conductivity problem in the plane. Annals of Math., 163 (2006), 265-299. Zbl1111.35004MR2195135
- K. Astala, M. Lassas, and L. Päiväirinta, Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Diff. Eqns.30 (2005), 207–224. Zbl1129.35483MR2131051
- K. Astala, M. Lassas, and L. Päivärinta, Limits of visibility and invisibility for Calderón’s inverse problem in the plane, in preparation. Zbl06542780
- R. Brown and R. Torres, Uniqueness in the inverse conductivity problem for conductivities with derivatives in J. Fourier Analysis Appl., 9 (2003), 1049-1056. Zbl0867.35111MR2026763
- R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions, Comm. PDE, 22 (1997), 1009-10027. Zbl0884.35167MR1452176
- A.P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. MR590275
- S. Cummer, B.-I. Popa, D. Schurig, D. Smith, and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74 (2006), 036621.
- A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Comm. Math. Phys.275, (2007), 749-789. Zbl1151.78006MR2336363
- A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett.99, 183901 (2007).
- A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Effectiveness and improvement of cylindrical cloaking with the SHS lining. Optics Express15, (2007), 12717-12734.
- A. Greenleaf, M. Lassas, and G. Uhlmann, The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math56, (2003), no. 3, 328–352. Zbl1061.35165MR1941812
- A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot detected in EIT, Physiolog. Meas. (special issue on Impedance Tomography), 24, (2003), 413-420.
- A. Greenleaf, M. Lassas, and G. Uhlmann, On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett.10 (2003), no. 5-6, 685-693. Zbl1054.35127MR2024725
- T. Kilpeläinen, J. Kinnunen, and O. Martio, Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12 (2000), no. 3, 233–247. Zbl0962.46021MR1752853
- R. Kohn, H. Shen, M. Vogelius, and M. Weinstein, Cloaking via change of variables in Electrical Impedance Tomography, preprint 2007. Zbl1153.35406MR2384775
- R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, SIAM-AMS Proc., 14 (1984). Zbl0573.35084MR773707
- M. Lassas and G. Uhlmann, Determining Riemannian manifold from boundary measurements, Ann. Sci. École Norm. Sup., 34 (2001), no. 5, 771–787. Zbl0992.35120MR1862026
- M. Lassas, M. Taylor, and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222. Zbl1077.58012MR2014876
- J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112. Zbl0702.35036MR1029119
- U. Leonhardt, Optical Conformal Mapping, Science, 312, 1777-1780. Zbl1226.78001MR2237569
- G. Milton, M. Briane, and J. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys., 8 (2006), 248.
- G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. Royal Soc. A, 462 (2006), 3027–3059. Zbl1149.00310MR2263683
- A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. Zbl0857.35135MR1370758
- P. Ola, L. Päivärinta, E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J., 70 (1993), no. 3, 617–653. Zbl0804.35152MR1224101
- L. Päivärinta, A. Panchenko and G. Uhlmann, Complex geometrical optics for Lipschitz conductivities, Revista Matematica Iberoamericana, 19(2003), 57-72. Zbl1055.35144MR1993415
- J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields, Science, 312, 1780-1782. Zbl1226.78003MR2237570
- J.B. Pendry, D. Schurig, and D.R. Smith, Calculation of material properties and ray tracing in transformation media, Opt. Exp., 14, (2006), 9794.
- D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (2006), 977-980.
- V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, Negative index of refraction in optical metamaterials Optics Letters, 30 (2005), 3356-3358
- Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions", Inverse Problems, 19 (2003), 1001-1010. Zbl1054.35139MR2024685
- J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math.43 (1990), 201–232. Zbl0709.35102MR1038142
- J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. of Math., 125 (1987), 153–169. Zbl0625.35078MR873380
- R. Weder, A Rigorous Time-Domain Analysis of Full–Wave Electromagnetic Cloaking (Invisibility), preprint 2007.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.