On determining a riemannian manifold from the Dirichlet-to-Neumann map

Matti Lassas; Gunther Uhlmann

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 5, page 771-787
  • ISSN: 0012-9593

How to cite

top

Lassas, Matti, and Uhlmann, Gunther. "On determining a riemannian manifold from the Dirichlet-to-Neumann map." Annales scientifiques de l'École Normale Supérieure 34.5 (2001): 771-787. <http://eudml.org/doc/82557>.

@article{Lassas2001,
author = {Lassas, Matti, Uhlmann, Gunther},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {electrical impedance tomography; compact Riemannian surface; Cauchy data; harmonic functions},
language = {eng},
number = {5},
pages = {771-787},
publisher = {Elsevier},
title = {On determining a riemannian manifold from the Dirichlet-to-Neumann map},
url = {http://eudml.org/doc/82557},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Lassas, Matti
AU - Uhlmann, Gunther
TI - On determining a riemannian manifold from the Dirichlet-to-Neumann map
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 5
SP - 771
EP - 787
LA - eng
KW - electrical impedance tomography; compact Riemannian surface; Cauchy data; harmonic functions
UR - http://eudml.org/doc/82557
ER -

References

top
  1. [1] Brown R., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal.27 (1996) 1049-1056. Zbl0867.35111MR1393424
  2. [2] Brown R., Uhlmann G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations22 (1997) 1009-1027. Zbl0884.35167MR1452176
  3. [3] Calderón A.P., On an inverse boundary value problem, in: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Río de Janeiro, 1980, pp. 65-73. MR590275
  4. [4] Hörmander L., The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. Zbl0601.35001MR781536
  5. [5] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998, 284 pp. Zbl0908.35134MR1482521
  6. [6] Kohn R., Vogelius M., Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math.38 (1985) 643-667. Zbl0595.35092MR803253
  7. [7] Lee J., Uhlmann G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math.42 (1989) 1097-1112. Zbl0702.35036MR1029119
  8. [8] Nachman A., A global uniqueness for a two-dimensional inverse problem, Ann. Math.142 (2) (1996) 71-96. Zbl0857.35135MR1370758
  9. [9] Petersen P., Riemannian Geometry, Springer-Verlag, 1998. Zbl0914.53001MR1480173
  10. [10] Sylvester J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math.38 (1990) 201-232. Zbl0709.35102MR1038142
  11. [11] Sylvester J., Uhlmann G., A uniqueness theorem for an inverse boundary problem, Ann. Math.125 (2) (1987) 153-169. Zbl0625.35078MR873380
  12. [12] Taylor M., Partial Differential Equations II, Springer-Verlag, 1996. Zbl0869.35004
  13. [13] Taylor M., Partial Differential Equations III, Springer-Verlag, 1996. Zbl0869.35004
  14. [14] Tennison B., Sheaf Theory, Cambridge University Press, 1975, 164 pp. Zbl0313.18010MR404390
  15. [15] Uhlmann G., Developments in inverse problems since Calderón's foundational paper, in: Harmonic Analysis and Partial Differential Equations, University of Chicago Press, 1999, pp. 245-295, [Essays in honor of Alberto P. Calderón, University of Chicago Press, edited by Christ M., Kenig C. and Sadosky C.]. Zbl0963.35203MR1743870
  16. [16] Vekua I., Generalized Analytic Functions, Pergamon Press, 1962. Zbl0100.07603MR150320

NotesEmbed ?

top

You must be logged in to post comments.