On determining a riemannian manifold from the Dirichlet-to-Neumann map

Matti Lassas; Gunther Uhlmann

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 5, page 771-787
  • ISSN: 0012-9593

How to cite

top

Lassas, Matti, and Uhlmann, Gunther. "On determining a riemannian manifold from the Dirichlet-to-Neumann map." Annales scientifiques de l'École Normale Supérieure 34.5 (2001): 771-787. <http://eudml.org/doc/82557>.

@article{Lassas2001,
author = {Lassas, Matti, Uhlmann, Gunther},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {electrical impedance tomography; compact Riemannian surface; Cauchy data; harmonic functions},
language = {eng},
number = {5},
pages = {771-787},
publisher = {Elsevier},
title = {On determining a riemannian manifold from the Dirichlet-to-Neumann map},
url = {http://eudml.org/doc/82557},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Lassas, Matti
AU - Uhlmann, Gunther
TI - On determining a riemannian manifold from the Dirichlet-to-Neumann map
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 5
SP - 771
EP - 787
LA - eng
KW - electrical impedance tomography; compact Riemannian surface; Cauchy data; harmonic functions
UR - http://eudml.org/doc/82557
ER -

References

top
  1. [1] Brown R., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal.27 (1996) 1049-1056. Zbl0867.35111MR1393424
  2. [2] Brown R., Uhlmann G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations22 (1997) 1009-1027. Zbl0884.35167MR1452176
  3. [3] Calderón A.P., On an inverse boundary value problem, in: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Río de Janeiro, 1980, pp. 65-73. MR590275
  4. [4] Hörmander L., The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. Zbl0601.35001MR781536
  5. [5] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998, 284 pp. Zbl0908.35134MR1482521
  6. [6] Kohn R., Vogelius M., Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math.38 (1985) 643-667. Zbl0595.35092MR803253
  7. [7] Lee J., Uhlmann G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math.42 (1989) 1097-1112. Zbl0702.35036MR1029119
  8. [8] Nachman A., A global uniqueness for a two-dimensional inverse problem, Ann. Math.142 (2) (1996) 71-96. Zbl0857.35135MR1370758
  9. [9] Petersen P., Riemannian Geometry, Springer-Verlag, 1998. Zbl0914.53001MR1480173
  10. [10] Sylvester J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math.38 (1990) 201-232. Zbl0709.35102MR1038142
  11. [11] Sylvester J., Uhlmann G., A uniqueness theorem for an inverse boundary problem, Ann. Math.125 (2) (1987) 153-169. Zbl0625.35078MR873380
  12. [12] Taylor M., Partial Differential Equations II, Springer-Verlag, 1996. Zbl0869.35004
  13. [13] Taylor M., Partial Differential Equations III, Springer-Verlag, 1996. Zbl0869.35004
  14. [14] Tennison B., Sheaf Theory, Cambridge University Press, 1975, 164 pp. Zbl0313.18010MR404390
  15. [15] Uhlmann G., Developments in inverse problems since Calderón's foundational paper, in: Harmonic Analysis and Partial Differential Equations, University of Chicago Press, 1999, pp. 245-295, [Essays in honor of Alberto P. Calderón, University of Chicago Press, edited by Christ M., Kenig C. and Sadosky C.]. Zbl0963.35203MR1743870
  16. [16] Vekua I., Generalized Analytic Functions, Pergamon Press, 1962. Zbl0100.07603MR150320

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.