Quelques problèmes d’irrégularité dans l’interaction fluide-solide

David Gérard-Varet[1]

  • [1] DMA, UMR 8553, Ecole Normale Supérieure, 45 rue d’Ulm, F75230 Paris Cedex 05.

Journées Équations aux dérivées partielles (2008)

  • page 1-19
  • ISSN: 0752-0360

How to cite

top

Gérard-Varet, David. "Quelques problèmes d’irrégularité dans l’interaction fluide-solide." Journées Équations aux dérivées partielles (2008): 1-19. <http://eudml.org/doc/10634>.

@article{Gérard2008,
affiliation = {DMA, UMR 8553, Ecole Normale Supérieure, 45 rue d’Ulm, F75230 Paris Cedex 05.},
author = {Gérard-Varet, David},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-19},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quelques problèmes d’irrégularité dans l’interaction fluide-solide},
url = {http://eudml.org/doc/10634},
year = {2008},
}

TY - JOUR
AU - Gérard-Varet, David
TI - Quelques problèmes d’irrégularité dans l’interaction fluide-solide
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 19
LA - eng
UR - http://eudml.org/doc/10634
ER -

References

top
  1. A. Basson, D. Gérard-Varet, Wall laws for fluid flows at a boundary with random roughness, Comm. Pure Appl. Math. 61 (2008), 941-987 Zbl1179.35207MR2410410
  2. J. Casado-Díaz, E. Fernández-Cara, J. Simon, Why viscous fluids adhere to rugose walls: a mathematical explanation, J. Differential Equations 189 (2003), 526-537 Zbl1061.76014MR1964478
  3. R.H. Davis, Y. Zhao, K. Galvin, H.J. Wilson, Solid-solid contacts due to surface roughness and their effects on suspension behaviour, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 361 (2003), 871-894 Zbl1134.76725MR1995441
  4. B. Desjardins, M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), 59-71 Zbl0943.35063MR1682663
  5. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, 39 (1994), Springer-Verlag, New York Zbl0949.35005MR1284206
  6. D. Gérard-Varet, The Navier wall law at a boundary with random roughness, (2008) Zbl1176.35127MR2470924
  7. D. Gérard-Varet, M. Hillairet, Regularity issues in the problem of fluid-structure interaction, (2008) Zbl1192.35131
  8. D. Gérard-Varet, N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary, (2008) Zbl1193.35130
  9. J. Happel, H. Brenner, Low Reynolds number hydrodynamics with special applications to particulate media, (1965), Prentice-Hall Inc., Englewood Cliffs, N.J. Zbl0612.76032MR195360
  10. M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations 32 (2007), 1345-1371 Zbl1221.35279MR2354496
  11. O. A. Ladyženskaja, V. A. Solonnikov, Determination of solutions of boundary value problems for stationary Stokes and Navier-Stokes equations having an unbounded Dirichlet integral, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 117-160, 308 Zbl0463.35069MR579479
  12. A. Lefevbre, Fluid Particle simulation with FREEFEM++, Esaim Proceedings 18 (2007), 120-132 Zbl05213260MR2404900
  13. N. Masmoudi, L. Saint-Raymond, From the Boltzmann equation to the Stokes-Fourier system in a bounded domain, Comm. Pure Appl. Math. 56 (2003), 1263-1293 Zbl1024.35031MR1980855
  14. B. Maury, A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint, Numer. Math. 102 (2006), 649-679 Zbl1091.70002MR2207284
  15. J.A. San Martín, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 (2002), 113-147 Zbl1018.76012MR1870954
  16. D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math. 4 (1987), 99-110 Zbl0655.76022MR899206
  17. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (2003), 1499-1532 Zbl1101.35356MR2029294
  18. C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, L. Bocquet, Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries, Phys. Fluids 19 (2007) Zbl1182.76848

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.