On the global existence for the axisymmetric Euler equations

Hammadi Abidi[1]; Taoufik Hmidi[1]; Sahbi Keraani[1]

  • [1] IRMAR, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes cedex. France

Journées Équations aux dérivées partielles (2008)

  • Volume: 347, Issue: 1, page 1-17
  • ISSN: 0752-0360

Abstract

top
This paper deals with the global well-posedness of the 3 D axisymmetric Euler equations for initial data lying in critical Besov spaces B p , 1 1 + 3 p . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .

How to cite

top

Abidi, Hammadi, Hmidi, Taoufik, and Keraani, Sahbi. "On the global existence for the axisymmetric Euler equations." Journées Équations aux dérivées partielles 347.1 (2008): 1-17. <http://eudml.org/doc/10636>.

@article{Abidi2008,
abstract = {This paper deals with the global well-posedness of the $3$D axisymmetric Euler equations for initial data lying in critical Besov spaces $B_\{p,1\}^\{1+\frac\{3\}\{p\}\}$. In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .},
affiliation = {IRMAR, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes cedex. France; IRMAR, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes cedex. France; IRMAR, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes cedex. France},
author = {Abidi, Hammadi, Hmidi, Taoufik, Keraani, Sahbi},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
number = {1},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the global existence for the axisymmetric Euler equations},
url = {http://eudml.org/doc/10636},
volume = {347},
year = {2008},
}

TY - JOUR
AU - Abidi, Hammadi
AU - Hmidi, Taoufik
AU - Keraani, Sahbi
TI - On the global existence for the axisymmetric Euler equations
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
VL - 347
IS - 1
SP - 1
EP - 17
AB - This paper deals with the global well-posedness of the $3$D axisymmetric Euler equations for initial data lying in critical Besov spaces $B_{p,1}^{1+\frac{3}{p}}$. In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .
LA - eng
UR - http://eudml.org/doc/10636
ER -

References

top
  1. J. T. Beale, T. Kato, A. Majda, Remarks on the Breakdown of Smooth Solutions for the 3 D Euler Equations, Comm. Math. Phys. 94 (1984) 61-66. Zbl0573.76029MR763762
  2. J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, 1976. Zbl0344.46071MR482275
  3. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l’École Norm. Sup. 14 (1981) 209-246. Zbl0495.35024MR631751
  4. D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal. 38 (2004), no. 3-4, 339-358. Zbl1068.35097MR2072064
  5. J.-Y. Chemin, Perfect incompressible Fluids, Clarendon press, Oxford, 1998. Zbl0927.76002MR1688875
  6. P. Constantin, C. Fefferman, A. Majda, J. Geometric constraints on potentially singular solutions for the 3D Euler equations, Comm. Partial Diff. Eqs. 21 (1996), no. 3-4, 559-571. Zbl0853.35091MR1387460
  7. R. Danchin, Axisymmetric incompressible flows with bounded vorticity, Russian Math. Surveys 62 (2007), no 3, 73-94. Zbl1139.76011MR2355419
  8. T. Hmidi, S. Keraani, Incompressible viscous flows in borderline Besov spaces, Arch. Ration. Mech. Anal. 189 (2008), no. 2, 283-300. Zbl1147.76014MR2413097
  9. T. Kato, Nonstationary flows of viscous and ideal fluids in 3 , J. Functional analysis, 9 (1972), 296-305. Zbl0229.76018MR481652
  10. R. O’Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142. Zbl0178.47701MR146673
  11. H. C. Pak, Y. J. Park, Existence of solution for the Euler equations in a critical Besov space B , 1 1 ( n ) , Comm. Partial Diff. Eqs, 29 (2004) 1149-1166. Zbl1091.76006MR2097579
  12. J. Peetre, New thoughts on Besov spaces, Duke University Mathematical Series 1, Durham N. C. 1976. Zbl0356.46038MR461123
  13. X. Saint Raymond, Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations 19 (1994), no. 1-2, 321-334. Zbl0795.35063MR1257007
  14. T. Shirota, T. Yanagisawa, Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 10, 299–304. Zbl0831.35141MR1313183
  15. M. R. Ukhovskii, V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikl. Mat. Meh. 32 (1968), no. 1, 59-69. Zbl0172.53405MR239293
  16. M. Vishik, Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal 145, 197-214, 1998. Zbl0926.35123MR1664597

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.