Quelques exemples de problèmes inverses en statistique et en traitement du signal

M. Lavielle; E. Moulines

Revue de Statistique Appliquée (1997)

  • Volume: 45, Issue: 4, page 5-38
  • ISSN: 0035-175X

How to cite

top

Lavielle, M., and Moulines, E.. "Quelques exemples de problèmes inverses en statistique et en traitement du signal." Revue de Statistique Appliquée 45.4 (1997): 5-38. <http://eudml.org/doc/106427>.

@article{Lavielle1997,
author = {Lavielle, M., Moulines, E.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {5-38},
publisher = {Société de Statistique de France},
title = {Quelques exemples de problèmes inverses en statistique et en traitement du signal},
url = {http://eudml.org/doc/106427},
volume = {45},
year = {1997},
}

TY - JOUR
AU - Lavielle, M.
AU - Moulines, E.
TI - Quelques exemples de problèmes inverses en statistique et en traitement du signal
JO - Revue de Statistique Appliquée
PY - 1997
PB - Société de Statistique de France
VL - 45
IS - 4
SP - 5
EP - 38
LA - fre
UR - http://eudml.org/doc/106427
ER -

References

top
  1. [1] Basseville M. and Nikiforov N. (1993), The Detection of abrupt changes - Theory and applications, Prentice-Hall: Information and System sciences series. MR1210954
  2. [2] Benveniste A., Metivier M., and Priouret P. (1987), Algorithmes adaptatifs et approximations stochastiques, Masson. Zbl0639.93002
  3. [3] Besag J.E. (1986), «On the statistical analysis of dirty pictures», J. R. Statist. Soc. B, vol. 48, pp. 259- 302. Zbl0609.62150MR876840
  4. [4] Binder D.A. (1978), «Bayesian clustering analysis», Biometrika, vol. 68, pp.275-286. Zbl0376.62007MR501592
  5. [5] Biscarat J.C. (1994), «Almost sure convergence of a class of stochastic approximation algorithms», Stoch. Proc. Appl., vol. 50, pp. 83-100. Zbl0819.60033MR1262332
  6. [6] Blake A. and Zisserman A. (1987), Visual Reconstruction. Cambridge, MA: MIT Press. MR919733
  7. [7] Brandiere O. and Duflo M. (1996), «Les algorithmes stochastiques contournent-ils les pièges ?», Annales de l'Institut H. Poincaré, vol. 32, pp. 395-427. Zbl0849.62043MR1387397
  8. [8] Brodsky B.E. and Darkhovsky B.S. (1993), Nonparametric methods in change-point problems. Kluwer Academic Publishers, the Netherlands. Zbl0779.62031MR1228205
  9. [9] Cardoso J.F. and Moulines E. (1994), «How much more DOA information in higher-order statistics?», in Proc. Int. Conf. on Acoust. Speech and Sig. Proc, pp. 199- 202. 
  10. [10] Catoni O. (1992), «Rough large deviation estimates for simulated annealing : application to exponential shedules», The Annals of Proba., vol. 20, no. 3, pp. 1109- 1146. Zbl0755.60021MR1175253
  11. [11] Celeux G. and Diebolt J. (1985), «The SEM algorithm : a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem», Computational Statistics Quarterly, vol. 2, pp. 73- 82. 
  12. [12] Celeux G. and Diebolt J. (1992), «A stochastic approximation type EM algorithm for the mixture problem», Stoch. and Stoch. Reports, vol. 41, pp. 119-134. Zbl0766.62050MR1275369
  13. [13] Delyon B. (1996), « General results on stochastic approximation », IEEE Trans. On Autom. Control, 41, pp. 1245-1255. Zbl0867.93075MR1409470
  14. [ 14] Dempster A., Laird N., and Rubin D. (1977), « Maximum-likelihood from incomplete data via the EM algorithm», J. R. Statist. Soc.B, vol. 39, pp. 1- 38. Zbl0364.62022MR501537
  15. [15] Deshayes J. and Picard D. (1986), «Off-line statistical analysis of change point models using non-parametric and likelihood method », in Detection of abrupt changes in signals and systems, Lecture Notes in Control and Information Sciences, pp. 259-275, Edited by M. Basseville et A. Benveniste. 
  16. [16] Donoho D. (1981), « On minimum entropy deconvolution », in Applied time-series analysis II, pp. 565 -609, Academic Press. Zbl0481.62075
  17. [17] Duflo M. (1996), Algorithmes Stochastiques. SMAI, Springer. Zbl0882.60001MR1612815
  18. [18] Gamboa F. and Gassiat E. (1996), «Blind deconvolution of discrete linear systems», The Annals of Stat., vol. 24, 1964-1981. Zbl0867.62073MR1421156
  19. [19] Fort J.C. and Pagès G. (1996), «Convergence of stochastic algorithms : from Kushner-Clark theorem to the Lyapounov functional method », Adv .appl. prob., vol. 28, pp. 1072-1094. Zbl0881.62085MR1418247
  20. [20] Gaeta M. and Lacoume J.L. (1990), «Estimateurs du maximum de vraisemblance étendus à la séparation de sources non gaussiennes», Traitement du Signal, vol. 7, no. 5, pp. 419-434. MR1097385
  21. [21] Gelfand A.E. and Smith A.F.M. (1990), «Sampling based approach for calculating marginal densities», J. Amer. Stat. Assoc., vol. 85, pp. 398-409. Zbl0702.62020MR1141740
  22. [22] Gelfand S.B. and Mitter S.K. (1993), «Metropolis-type annealing algorithms for global optimization in IRd*», SIAM J. Control and optimization, vol. 31, no. 1, pp. 111-131. Zbl0814.65059MR1200226
  23. [23] Geman D. (1990), Random Fields and Inverse Problems in Imaging. Lecture Notes in Mathematics, Springer-Verlag. Zbl0718.60119MR1100283
  24. [24] Geman S. and Geman D. (1984), «Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images», IEEE Trans. on Pattern Anal. Machine Intell., vol. 6, pp. 721-741. Zbl0573.62030
  25. [25] Hawkins D.M. (1980), «Identification of outliers », in Monographs on Applied Probability and Statistics, Chapman and Hall. Zbl0438.62022MR584791
  26. [26] Jutten C. and Hérault J. (1988), «Une solution neuromimétique au problème de séparation de sources», Traitement du Signal, vol. 5, no. 6, pp. 389-403. 
  27. [27] Kaufman L. and Rousseuw P.J. (1990), Finding groups in data. An introduction to cluster analysis. Wiley: New-York. MR1044997
  28. [28] Kirkpatrick S., Gelatt C.D., and Vecchi M.P. (1983), «Optimisation by simulated annealing», Science, vol. 220, no. 13 May, pp. 621-680. Zbl1225.90162MR702485
  29. [29] Lavielle M. (1991), «2-D Bayesian deconvolution », Geophysics, vol. 56, no. 12, pp. 2008-2018. 
  30. [30] Lavielle M. (1993), «Bayesian deconvolution of Bernoulli-Gaussian processes», Signal Processing, vol. 33, pp. 67-79. Zbl0788.62024
  31. [3 1 ] Lavielle M. (1993), «Detection of changes in the spectrum of a multidimensional process», IEEE Tr. on Sig. Proc., vol. 41, no. 2, pp. 742-749. Zbl0825.93760
  32. [32] Lavielle M. (1995), «A stochastic procedure for parametric and nonparametric estimation in the case of incomplete data », Signal Processing, vol. 42, pp.3-17. Zbl0871.62084
  33. [33] Lavielle M. and Moulines E. (1995), «On a stochastic approximation version of the EM algorithm», tech. rep., Publication Université Paris-Sud. 
  34. [34] Lavielle M. and Moulines E. (1997), «Détection de ruptures multiples dans la moyenne d'un processus aléatoire», note C.R. Acad. Sci. Paris, t. 324, I, pp. 239-243. Zbl0882.60031MR1438392
  35. [35] Picard D. (1985), «Testing and estimating change points in time series», J. Applied Prob., vol. 17, pp. 841-867. Zbl0585.62151MR809433
  36. [36] Qian W. and Titterington D.M. (1991), «Estimation of parameters in hidden Markov models», Phil. Trans. Roy. Soc. London, A, vol. 337, pp. 407-428. Zbl0746.62086
  37. [37] Robert C.P. (1996), Méthodes de Monte Carlo par Chaînes de Markov. Statistique mathématique et Probabilité, Economica. Zbl0917.60007MR1419096
  38. [38] Rosenfeld A. and Kak A. (1982), Digital picture processing, vol. 2. London: Academic-Press. Zbl0564.94002MR666550
  39. [39] Shalvi O. and Weinstein E. (1990), « New criteria for blind deconvolution of nonminimum phase systems (channels », IEEE Tr. on Info. Theory, vol. 36, no. 2, pp. 312- 321. Zbl0704.94001
  40. [40] Titterington D.M., Smith A., and Makov U. (1985), Statistical analysis of finite mixture distributions. Wiley- New York. Zbl0646.62013MR838090
  41. [41] Wei G. and Tanner M. (1990), «A Monte-Carlo implementation of the EM algorithm and the Poor's Man's data augmentation algorithm», J. Amer Stat. Assoc., vol. 85, pp. 699-704. 
  42. [42] Wu C. (1983), «On the convergence property of the EM algorithm », The Annals of Stat., vol. 11, pp. 95-103. Zbl0517.62035MR684867
  43. [43] Younes L. (1989), «Parametric inference for imperfectly observed Gibbsian fields», Prob. Theory Rel. Fields, vol. 82, pp. 625-645. Zbl0659.62115MR1002904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.