Les algorithmes stochastiques contournent-ils les pièges ?
Annales de l'I.H.P. Probabilités et statistiques (1996)
- Volume: 32, Issue: 3, page 395-427
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBrandière, Odile, and Duflo, Marie. "Les algorithmes stochastiques contournent-ils les pièges ?." Annales de l'I.H.P. Probabilités et statistiques 32.3 (1996): 395-427. <http://eudml.org/doc/77541>.
@article{Brandière1996,
author = {Brandière, Odile, Duflo, Marie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {differential equation method; regression models; Robbins-Monro algorithm; principal components; Kiefer-Wolfowitz algorithm; gradient algorithm; Markov perturbations; Gibbsian model; stochastic gradient algorithm; local minima; repulsive direction},
language = {fre},
number = {3},
pages = {395-427},
publisher = {Gauthier-Villars},
title = {Les algorithmes stochastiques contournent-ils les pièges ?},
url = {http://eudml.org/doc/77541},
volume = {32},
year = {1996},
}
TY - JOUR
AU - Brandière, Odile
AU - Duflo, Marie
TI - Les algorithmes stochastiques contournent-ils les pièges ?
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 3
SP - 395
EP - 427
LA - fre
KW - differential equation method; regression models; Robbins-Monro algorithm; principal components; Kiefer-Wolfowitz algorithm; gradient algorithm; Markov perturbations; Gibbsian model; stochastic gradient algorithm; local minima; repulsive direction
UR - http://eudml.org/doc/77541
ER -
References
top- [1] W.J. Barlow, Coefficient properties of random variable sequences. Ann. of probability, vol. 3, 1975, p. 840-848. Zbl0317.60021MR388530
- [2] A Benveniste, M. Métivier et P. Priouret, Algorithmes adaptatifs et approximations stochastiques. Masson, 1987. Zbl0639.93002
- [3] O. Brandière, Un algorithme du gradient pour l'analyse en composantes principales. Comptes Rendus Académie desSciences, 321, série I, 1995, p. 233-236. Zbl0836.60035MR1345454
- [4] D.L. Burkholder, Independent sequences with the Stein property, Ann. of math. stat., vol. 39, 1968, p. 1282-1288. Zbl0162.49404MR228045
- [5] B. Delyon, A deterministic approach to stochastic approximation, IRISA, prépublication n° 789, 1994.
- [6] D.P. Derevitskii et A.L. Fradkov, Two models for analysing the dynamics of adaption algorithms. Avtomatika i Telemekhanika, 1, 1974, p. 67-75; en anglais, Automation and remote control, vol. 1, 1974, p. 59-67. Zbl0282.93030MR456732
- [7] M. Duflo, Méthodes récursives aléatoires. Masson, 1990. Zbl0703.62084MR1082344
- [8] J.C. Fort et G. Pagès, Sur la convergence presque sûre d'algorithmes stochastiques : le théorème de Kushner-Clark revisité. Prépublication du SAMOS 33, Université Paris 1, 1994.
- [9] S.B. Gelfand et S.K. Mitter, Recursive stochastic algorithms for global optimization in Rd. SIAM J. control and optimization, vol. 29, 1991, p. 999-1018. Zbl0753.65051MR1110084
- [10] S.B. Gelfand et S.K. Mitter, Metropolis-type annealing algorithms for global optimization in Rd. SIAM J. control and optimization, vol. 31, 1993, p. 111-131. Zbl0814.65059MR1200226
- [11] P. Hartman, Ordinary Differential Equations, Wiley, 1964; seconde édition, 1982. Zbl0125.32102
- [12] K. Hornik et C.M. Kuan, Convergence analysis of local feature extraction algorithms. Neural networks, vol. 5, 1992, p. 229-240.
- [13] C.R. Hwang et S.J. Sheu, On the behaviour of a stochastic algorithm with annealing. Rapport technique, Academia sinica, Taiwan, 1990.
- [14] B. Jessen et A. Wintner, Distribution functions and the Riemann zeta function. Trans. american math. soc., vol. 38, 1935, p. 725-734. Zbl0014.15401MR1501802
- [15] J. Kiefer et J. Wolfowitz, Stochastic estimation of the maximum of a regression fonction. Ann. math. stat., vol. 23, 1952, p. 462-466. Zbl0049.36601MR50243
- [16] H.J. Kushner, Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: Global minimization via Monte Carlo. SIAM J. Appl. Math., 47, 1987, p. 169-185. Zbl0615.60024MR873242
- [17] H.J. Kushner et D.S. Clark, Stochastic approximation for constrained and unconstrained systems. Applied math. science series, vol. 26, Springer, 1978. Zbl0381.60004MR499560
- [18] T.Z. Lai et C.Z. Wei, A note on martingale difference sequences satisfying the local Marcinkiewicz-Zygmund condition. Bull. of the institute of mathematics, Academia Sinica, vol. 11, 1983, p. 1-13. Zbl0517.60054MR718896
- [19] V.A. Lazarev, Convergence of stochastic-approximation procedures in the case of a regression equation with several roots. Problems ofInformation Transmission, vol. 28, 1992, p. 66-78; en russe, Problemy Peredachi Informatsii, vol. 28, 1992, p. 75-88. Zbl0783.62058MR1163142
- [20] P. Lévy, Sur les séries dont les termes sont des variables éventuellement indépendantes. Studia math., vol. 3, 1931, p. 119-155. Zbl0003.30301JFM57.0616.01
- [21] L. Ljung, Analysis of recursive stochastic algorithms. IEEE Trans. Automatic Control, vol. 22, 1977, p. 551-575. Zbl0362.93031MR465458
- [22] L. Ljung, G. Pflug et H. Walk, Stochastic approximation of random systems. Birkhäuser, 1992. Zbl0747.62090MR1162311
- [23] L. Ljung et T. Soderström, Theory and practice of recursive identification, MIT Press, 1983. Zbl0548.93075MR719192
- [24] S.P. Meyn et R.L. Tweedie, Markov chains and stochastic stability. Springer, 1993. Zbl0925.60001MR1287609
- [25] M.B. Nevel'son et R.Z. Has'minskii, Stochastic approximation and recursive estimations. Nauka, Moscou, 1972 - Translation of math. monographs, vol. 47, American Mathematical Society, 1973. Zbl0355.62075MR423714
- [26] E. Nummelin, General irreductible Markov chains and nonnegative operators. Cambridgeuniversity press, 1984. Zbl0551.60066MR776608
- [27] E. Oja, Principal networks, principal components, and linear neural networks. Neural networks, vol. 5, 1992, p. 927-935.
- [28] E. Oja et J. Karhunen, On stochastic approximation of the eigenvalues of the expectation of a random matrix. J. of math. analysis and appl., vol. 106, 1985, p. 69-84. Zbl0583.62077MR780319
- [29] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (IV). J. Math. Pures Appl., vol. 4, 1886, p. 151-217. JFM18.0314.01
- [30] H. Robbins et S. Monro, A stochastic approximation method. Ann. math. stat., vol. 22, 1951, p. 400-407. Zbl0054.05901MR42668
- [31] L. Younes, Estimation and annealing gor Gibbsian fields. Ann. Inst. Henri Poincaré, vol. 24, 1988, p. 269-294. Zbl0651.62091MR953120
- [32] L. Younes, Parametric inference of imperfectly observed Gibbsian fields. Probability theory and related fields, vol. 82, 1989, p. 625-645. Zbl0659.62115MR1002904
- [33] C.Z. Wei, Martingale transforms with non-atomic limits and stochastic approximation. Probability theory and related fieds, vol. 95, 1993, p. 103-114. Zbl0792.60034MR1207309
- R. Pemantle, Non convergence to unstable points in urn models and stochastic approximations. Ann. of Probability, vol. 18, 1990, p. 698-712. Zbl0709.60054MR1055428
Citations in EuDML Documents
top- Michel Benaïm, Dynamics of stochastic approximation algorithms
- M. Lavielle, E. Moulines, Quelques exemples de problèmes inverses en statistique et en traitement du signal
- Gilles Pagès, Sur quelques algorithmes récursifs pour les probabilités numériques
- Gilles Pagès, Sur quelques algorithmes récursifs pour les probabilités numériques
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.