Les algorithmes stochastiques contournent-ils les pièges ?

Odile Brandière; Marie Duflo

Annales de l'I.H.P. Probabilités et statistiques (1996)

  • Volume: 32, Issue: 3, page 395-427
  • ISSN: 0246-0203

How to cite

top

Brandière, Odile, and Duflo, Marie. "Les algorithmes stochastiques contournent-ils les pièges ?." Annales de l'I.H.P. Probabilités et statistiques 32.3 (1996): 395-427. <http://eudml.org/doc/77541>.

@article{Brandière1996,
author = {Brandière, Odile, Duflo, Marie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {differential equation method; regression models; Robbins-Monro algorithm; principal components; Kiefer-Wolfowitz algorithm; gradient algorithm; Markov perturbations; Gibbsian model; stochastic gradient algorithm; local minima; repulsive direction},
language = {fre},
number = {3},
pages = {395-427},
publisher = {Gauthier-Villars},
title = {Les algorithmes stochastiques contournent-ils les pièges ?},
url = {http://eudml.org/doc/77541},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Brandière, Odile
AU - Duflo, Marie
TI - Les algorithmes stochastiques contournent-ils les pièges ?
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 3
SP - 395
EP - 427
LA - fre
KW - differential equation method; regression models; Robbins-Monro algorithm; principal components; Kiefer-Wolfowitz algorithm; gradient algorithm; Markov perturbations; Gibbsian model; stochastic gradient algorithm; local minima; repulsive direction
UR - http://eudml.org/doc/77541
ER -

References

top
  1. [1] W.J. Barlow, Coefficient properties of random variable sequences. Ann. of probability, vol. 3, 1975, p. 840-848. Zbl0317.60021MR388530
  2. [2] A Benveniste, M. Métivier et P. Priouret, Algorithmes adaptatifs et approximations stochastiques. Masson, 1987. Zbl0639.93002
  3. [3] O. Brandière, Un algorithme du gradient pour l'analyse en composantes principales. Comptes Rendus Académie desSciences, 321, série I, 1995, p. 233-236. Zbl0836.60035MR1345454
  4. [4] D.L. Burkholder, Independent sequences with the Stein property, Ann. of math. stat., vol. 39, 1968, p. 1282-1288. Zbl0162.49404MR228045
  5. [5] B. Delyon, A deterministic approach to stochastic approximation, IRISA, prépublication n° 789, 1994. 
  6. [6] D.P. Derevitskii et A.L. Fradkov, Two models for analysing the dynamics of adaption algorithms. Avtomatika i Telemekhanika, 1, 1974, p. 67-75; en anglais, Automation and remote control, vol. 1, 1974, p. 59-67. Zbl0282.93030MR456732
  7. [7] M. Duflo, Méthodes récursives aléatoires. Masson, 1990. Zbl0703.62084MR1082344
  8. [8] J.C. Fort et G. Pagès, Sur la convergence presque sûre d'algorithmes stochastiques : le théorème de Kushner-Clark revisité. Prépublication du SAMOS 33, Université Paris 1, 1994. 
  9. [9] S.B. Gelfand et S.K. Mitter, Recursive stochastic algorithms for global optimization in Rd. SIAM J. control and optimization, vol. 29, 1991, p. 999-1018. Zbl0753.65051MR1110084
  10. [10] S.B. Gelfand et S.K. Mitter, Metropolis-type annealing algorithms for global optimization in Rd. SIAM J. control and optimization, vol. 31, 1993, p. 111-131. Zbl0814.65059MR1200226
  11. [11] P. Hartman, Ordinary Differential Equations, Wiley, 1964; seconde édition, 1982. Zbl0125.32102
  12. [12] K. Hornik et C.M. Kuan, Convergence analysis of local feature extraction algorithms. Neural networks, vol. 5, 1992, p. 229-240. 
  13. [13] C.R. Hwang et S.J. Sheu, On the behaviour of a stochastic algorithm with annealing. Rapport technique, Academia sinica, Taiwan, 1990. 
  14. [14] B. Jessen et A. Wintner, Distribution functions and the Riemann zeta function. Trans. american math. soc., vol. 38, 1935, p. 725-734. Zbl0014.15401MR1501802
  15. [15] J. Kiefer et J. Wolfowitz, Stochastic estimation of the maximum of a regression fonction. Ann. math. stat., vol. 23, 1952, p. 462-466. Zbl0049.36601MR50243
  16. [16] H.J. Kushner, Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: Global minimization via Monte Carlo. SIAM J. Appl. Math., 47, 1987, p. 169-185. Zbl0615.60024MR873242
  17. [17] H.J. Kushner et D.S. Clark, Stochastic approximation for constrained and unconstrained systems. Applied math. science series, vol. 26, Springer, 1978. Zbl0381.60004MR499560
  18. [18] T.Z. Lai et C.Z. Wei, A note on martingale difference sequences satisfying the local Marcinkiewicz-Zygmund condition. Bull. of the institute of mathematics, Academia Sinica, vol. 11, 1983, p. 1-13. Zbl0517.60054MR718896
  19. [19] V.A. Lazarev, Convergence of stochastic-approximation procedures in the case of a regression equation with several roots. Problems ofInformation Transmission, vol. 28, 1992, p. 66-78; en russe, Problemy Peredachi Informatsii, vol. 28, 1992, p. 75-88. Zbl0783.62058MR1163142
  20. [20] P. Lévy, Sur les séries dont les termes sont des variables éventuellement indépendantes. Studia math., vol. 3, 1931, p. 119-155. Zbl0003.30301JFM57.0616.01
  21. [21] L. Ljung, Analysis of recursive stochastic algorithms. IEEE Trans. Automatic Control, vol. 22, 1977, p. 551-575. Zbl0362.93031MR465458
  22. [22] L. Ljung, G. Pflug et H. Walk, Stochastic approximation of random systems. Birkhäuser, 1992. Zbl0747.62090MR1162311
  23. [23] L. Ljung et T. Soderström, Theory and practice of recursive identification, MIT Press, 1983. Zbl0548.93075MR719192
  24. [24] S.P. Meyn et R.L. Tweedie, Markov chains and stochastic stability. Springer, 1993. Zbl0925.60001MR1287609
  25. [25] M.B. Nevel'son et R.Z. Has'minskii, Stochastic approximation and recursive estimations. Nauka, Moscou, 1972 - Translation of math. monographs, vol. 47, American Mathematical Society, 1973. Zbl0355.62075MR423714
  26. [26] E. Nummelin, General irreductible Markov chains and nonnegative operators. Cambridgeuniversity press, 1984. Zbl0551.60066MR776608
  27. [27] E. Oja, Principal networks, principal components, and linear neural networks. Neural networks, vol. 5, 1992, p. 927-935. 
  28. [28] E. Oja et J. Karhunen, On stochastic approximation of the eigenvalues of the expectation of a random matrix. J. of math. analysis and appl., vol. 106, 1985, p. 69-84. Zbl0583.62077MR780319
  29. [29] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (IV). J. Math. Pures Appl., vol. 4, 1886, p. 151-217. JFM18.0314.01
  30. [30] H. Robbins et S. Monro, A stochastic approximation method. Ann. math. stat., vol. 22, 1951, p. 400-407. Zbl0054.05901MR42668
  31. [31] L. Younes, Estimation and annealing gor Gibbsian fields. Ann. Inst. Henri Poincaré, vol. 24, 1988, p. 269-294. Zbl0651.62091MR953120
  32. [32] L. Younes, Parametric inference of imperfectly observed Gibbsian fields. Probability theory and related fields, vol. 82, 1989, p. 625-645. Zbl0659.62115MR1002904
  33. [33] C.Z. Wei, Martingale transforms with non-atomic limits and stochastic approximation. Probability theory and related fieds, vol. 95, 1993, p. 103-114. Zbl0792.60034MR1207309
  34. R. Pemantle, Non convergence to unstable points in urn models and stochastic approximations. Ann. of Probability, vol. 18, 1990, p. 698-712. Zbl0709.60054MR1055428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.