Une procédure bayésienne de sélection/validation différentielle pour déterminer le domaine d'attraction des valeurs extrêmes

Eric Parent; Jacques Bernier

Revue de Statistique Appliquée (2004)

  • Volume: 52, Issue: 4, page 5-31
  • ISSN: 0035-175X

How to cite


Parent, Eric, and Bernier, Jacques. "Une procédure bayésienne de sélection/validation différentielle pour déterminer le domaine d'attraction des valeurs extrêmes." Revue de Statistique Appliquée 52.4 (2004): 5-31. <http://eudml.org/doc/106556>.

author = {Parent, Eric, Bernier, Jacques},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {5-31},
publisher = {Société française de statistique},
title = {Une procédure bayésienne de sélection/validation différentielle pour déterminer le domaine d'attraction des valeurs extrêmes},
url = {http://eudml.org/doc/106556},
volume = {52},
year = {2004},

AU - Parent, Eric
AU - Bernier, Jacques
TI - Une procédure bayésienne de sélection/validation différentielle pour déterminer le domaine d'attraction des valeurs extrêmes
JO - Revue de Statistique Appliquée
PY - 2004
PB - Société française de statistique
VL - 52
IS - 4
SP - 5
EP - 31
LA - fre
UR - http://eudml.org/doc/106556
ER -


  1. Ancey C. (1996), Guide Neige et Avalanche : Connaissances, pratiques, sécurité. Éditions Édisud. 
  2. Berger J.O. (1985), Statistical decision theory and Bayesian analysis. Springer Verlag, New York. Zbl0572.62008MR804611
  3. Berger J.O. and Pericchi L. (1996), The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109 -122. Zbl0870.62021MR1394065
  4. Bernardo J.M. and Smith A.F.M. (1994), Bayesian theory. John Wiley and Sons, Londres. Zbl0796.62002MR1274699
  5. Bernier J., Parent E., Boreux J.J. (2000), Statistique pour l'environnement. Traitement bayésien de l'incertitude. Lavoisier, Tec § Doc. 
  6. Carlin B.P. and Chib S. (1995), B ayesian Model Choice via Markov Chain Monte Carlo Methods. Journal of the Royal Statistical Society, B57, 3473-484. Zbl0827.62027
  7. Chaouche A. and Bacro J.N. (2003), A statistical test procedure for the shape parameter of the generalized Pareto distribution, Comp. Stat. Data An. Zbl05373982
  8. Chib S. and Jeliazkov I. (1995), Marginal Likelihood from the Gibbs Output, J. Amer. Stat. Assoc.,90, 1313-1321. Zbl0868.62027MR1379473
  9. Chib S. and Jeliazkov I. (2001), Marginal Likelihood from the Metropolis-Hastings Output, J. Amer. Stat. Assoc., 96, 270-281. Zbl1015.62020MR1952737
  10. Coles S.G. (2001), An introduction to statistical modeling of extreme values. Springer Verlag, New York. Zbl0980.62043MR1932132
  11. Coles S.G. and Powell E.A. (1996), Bayesian methods in extreme value modelling : a review and new developments. Internat. Stat. Rev.64, 119- 136. Zbl0853.62025
  12. Davison A.C. and Smith R.L. (1990), Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society, B52, 393-442. Zbl0706.62039MR1086795
  13. Ferguson T. (1973), A Bayesian Analysis of Some Non Parametric Problems. Annals Statist.1, 209-230. Zbl0255.62037MR350949
  14. Fisher R.A., Tippett L.H.C. (1928), Limiting forms of the frequency distribution of the largest or the smallest member of a sample. Proc. Cambridge Philo Soc.24, 180-190. Zbl54.0560.05JFM54.0560.05
  15. Fortin V., Bernier J. et Bobée B. (1997), Simulation, Bayes, and bootstrap in statistical hydrology. Water Resour. Res., 33 (3) : 439-448. 
  16. Fréchet M. (1927), Sur la loi de probabilité de l'écart maximum. Annals of Polnish Math. Soc.6, 93. Zbl54.0562.06JFM54.0562.06
  17. Gelfand A.E. and Dey D.K. (1995), Bayesian Model Choice : Asymptotics and exact calculations. Journal of the Royal Statistical Society, B56, 3501-514. Zbl0800.62170MR1278223
  18. Gelfand A. and Smith A.F.M. (1990), Sampling-based approaches to calculating marginal densities. Journ. Amer. Stat. Ass., 85: 398-409. Zbl0702.62020MR1141740
  19. Gelman A., Carlin J.B., Stern H.S. and Rubin D.B. (1995), Bayesian data analysis. Chapman and Hall, Londres. Zbl0914.62018MR1385925
  20. Gelman A. and Rubin D.B. (1992), Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-511. 
  21. Gelman A., Meng X. and Stern H. (1996), Posterior Predictive Assessment of Model Fitness via Realized Discrepancies. Statistica Sinica6, 733- 807 Zbl0859.62028MR1422404
  22. Han C. and Carlin B.P. (2000), MCMC methods for computing Bayes factors : a comparative review. Division of Biostatistics, University of Minnesota. MCMCpreprint, available at http://www.stat.duke.edu. 
  23. Hoeting J.A., Madigan D., Raftery A.E., Volinsky C.T. (1999), Bayesian model averaging : A Tutorial, Statistical Science, 14, 4, p. 382- 417. Zbl1059.62525MR1765176
  24. Kadane J.B., Wolson L.J., O'Hagan A., Craig R. (1998), Papers on 'Elicitation' and Discussions. The Statistician47 (1), 3-53. 
  25. Kass R.E. and Raftery A.E. (1994), Bayes factors. J. Amer. Stat. Assoc., 90, 773-795. Zbl0846.62028
  26. Laplace P.S. (1847), Œuvres, Tome VII, Théorie analytique des probabilités. Reprint 1995. Editions Jacques Gabay, Paris. 
  27. Lehman E.L. (1986), Theory ofpoint estimation. 2nd edition. John Wiley and Sons, New York. 
  28. O'Hagan A. (1997), Properties of intrinsic and fractional Bayes factors. Test6, 101-118. Zbl0891.62001MR1466435
  29. O'Hagan A. (1998), Elicitation expert beliefs in substancial practical applications - The Statistician47 (1), 21- 35. 
  30. Parent E., Bernier J. (2001), Méthodes bayésiennes et modélisation des risques géophysiques extrêmes. La Revue de Modulad. 28: 1- 26. INRIA. 
  31. Parent E., Bernier J. (2002), Bayesian P.O.T.modeling for historical data. Journal of Hydrology, 274: 95-108. 
  32. Pickands J. (1975), Statistical inference using extreme order statistics. Ann. Stat., 3, 11-130. Zbl0312.62038MR423667
  33. Smith R.L. (1984), Threshold model for sample extreme in T. de Oliveira (ed.), Statistical Extremes and Applications, 621- 638. ReidelDordrecht. Zbl0574.62090MR784846
  34. Tanner M.A. (1996), Tools for statistical inference : methods for the exploration of posterior distribution and likelihoodfunctions. Springer Verlag, New York. Zbl0846.62001MR1396311

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.