Discrimination de courbes par régression inverse fonctionnelle

Louis Ferré; Nathalie Villa

Revue de Statistique Appliquée (2005)

  • Volume: 53, Issue: 1, page 39-57
  • ISSN: 0035-175X

How to cite

top

Ferré, Louis, and Villa, Nathalie. "Discrimination de courbes par régression inverse fonctionnelle." Revue de Statistique Appliquée 53.1 (2005): 39-57. <http://eudml.org/doc/106559>.

@article{Ferré2005,
author = {Ferré, Louis, Villa, Nathalie},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {1},
pages = {39-57},
publisher = {Société française de statistique},
title = {Discrimination de courbes par régression inverse fonctionnelle},
url = {http://eudml.org/doc/106559},
volume = {53},
year = {2005},
}

TY - JOUR
AU - Ferré, Louis
AU - Villa, Nathalie
TI - Discrimination de courbes par régression inverse fonctionnelle
JO - Revue de Statistique Appliquée
PY - 2005
PB - Société française de statistique
VL - 53
IS - 1
SP - 39
EP - 57
LA - fre
UR - http://eudml.org/doc/106559
ER -

References

top
  1. [1] BOSQ D. ( 1991), Modelization, non-parametric estimation and prediction for continuous time processes. In : Roussas, G. (Ed. ), Nonparametric Functional estimation and related Topics, NATO, ASI Series, pp. 509-529. Zbl0737.62032MR1154349
  2. [2] COOK R.D. ( 1991), Discussion of Li (1991) J. Am. Statis. Ass., 86, 328-332. 
  3. [3] COOK R.D.et YIN X. ( 2001), Dimension reduction and visualization in discriminant analysis, Australian & New-Zealand Journal of Statistics, 43, 147-199. Zbl0992.62056MR1839361
  4. [4] DAUXOIS J., FERRÉ L. and YAO A.F. ( 2001), Un modèle semi-paramétrique pour variable aléatoire Hilbertienne. C.R. Acad. Sci. Paris, t.327, série I, 947-952. Zbl0996.62035MR1873814
  5. [5] DAUXOIS J. and POUSSE A. ( 1976), Les analyses factorielles en calcul des probabilités et en statistique : essai d'étude synthétique. Thèse Toulouse III. Zbl0326.62039
  6. [6] DEVROYE L., GYÖRFI L. and LUGOSI G. ( 1996), A probabilistic theory for pattern recognition, New-York : Springer-Verlag. Zbl0853.68150MR1383093
  7. [7] DIPILLO P. ( 1979), Biased discriminant analysis : evaluation of the optimum probability of classification, Comm. Statist. Theory Methods, 8, 1447-1458. Zbl0414.62045MR547408
  8. [8] FERRATY F. and VIEU P. ( 2003), Curves Discrimination : a Non Parametric Approach. Computational and Statistical Data Analysis, 44, 161-173. Zbl05373903MR2020144
  9. [9] FERRÉ L. and VILLA N. ( 2005), Multi-layer Neural Network with Functional Inputs, soumis à publication. 
  10. [10] FERRÉ L. and YAO A. F. ( 2003), Functional Sliced Inverse Regression analysis. Statistics, 37, 475-488. Zbl1032.62052MR2022235
  11. [11] FERRÉ L. et YAO A.F. ( 2005), Smoothed Functional Inverse Regression. À paraître dans Statistica Sinica. Zbl1086.62054MR2233905
  12. [12] FRIEDMAN J. ( 1989), Regularized discriminant analysis, J. Amer. Statist. Assoc., 84, 165-175. MR999675
  13. [13] HAND D.J. ( 1982), Kernel discriminant analysis, Research Studies Press/Wiley. Zbl0562.62041MR666869
  14. [14] HASTIE T., TIBSHIRANI R. and BUJA A. ( 1994), Flexible Discriminant Analysis by optimal scoring, J. Amer. Statist. Ass., 89, 1255-1270. Zbl0812.62067MR1310220
  15. [15] HASTIE T., BUJA A. and TIBSHIRANI R. ( 1995), Penalized Discriminant Analysis, Ann. Statist., 23, p 73-102. Zbl0821.62031MR1331657
  16. [16] HERNANDEZ A. et VELILLA S. ( 2001), Dimension reduction in nonparametric discriminant analysis, Technical report. 
  17. [ 17] HOERL A.E. and KENNARD R.W. ( 1970a), Ridge regression :biased estimation for non orthogonal problems, Technometrics, 12-1, 55-67. Zbl0202.17205MR370945
  18. [18] HOERL A.E. and KENNARD R.W. ( 1970b), Ridge regression : Application to non orthogonal problems, Technometrics, 12-2, 69-82. Zbl0202.17206
  19. [19] HSING T. ( 1999), Nearest Neighbor Inverse Regression, Ann. Statist., 697-731. Zbl0951.62034MR1714711
  20. [20] JAMES G.M. and HASTIE T.J. ( 2001), Functional linear discriminant analysis for irregularly sampled curves, J.R. Statis. Soc., B, 64, 533-550. Zbl0989.62036MR1858401
  21. [21] LEURGANS S.E., MOYEED R.A. and SILVERMAN B.W. ( 1993), Canonical Correlation Analysis when the data are curves, J.R. Statis. Soc., B, 55,725-740. Zbl0803.62049MR1223939
  22. [22] LI K. C. ( 1991), Sliced Inverse Regression for dimension reduction, J. Amer. Statist. Ass., 86, 316-342. Zbl0742.62044MR1137117
  23. [23] LI K. C. ( 1992), On principal Hessian directions for data visualisation and dimension reduction : another application of Stein's lemma, Ann. Statist., 87, 1025-1039. Zbl0765.62003MR1209564
  24. [24] LI K.C., ARAGON Y., SHEDDEN K et THOMAS-AGAN C. ( 2003), Dimension reduction for multivariate data, J. Amer. Statist. Ass., 98, 99-109. Zbl1047.62059MR1965677
  25. [25] RAMSAY J. O. and SILVERMAN B. W. ( 1997), Functional Data Analysis, New-York : Springer Verlag. Zbl0882.62002MR2168993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.