Discrimination de courbes par régression inverse fonctionnelle
Revue de Statistique Appliquée (2005)
- Volume: 53, Issue: 1, page 39-57
- ISSN: 0035-175X
Access Full Article
topHow to cite
topFerré, Louis, and Villa, Nathalie. "Discrimination de courbes par régression inverse fonctionnelle." Revue de Statistique Appliquée 53.1 (2005): 39-57. <http://eudml.org/doc/106559>.
@article{Ferré2005,
author = {Ferré, Louis, Villa, Nathalie},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {1},
pages = {39-57},
publisher = {Société française de statistique},
title = {Discrimination de courbes par régression inverse fonctionnelle},
url = {http://eudml.org/doc/106559},
volume = {53},
year = {2005},
}
TY - JOUR
AU - Ferré, Louis
AU - Villa, Nathalie
TI - Discrimination de courbes par régression inverse fonctionnelle
JO - Revue de Statistique Appliquée
PY - 2005
PB - Société française de statistique
VL - 53
IS - 1
SP - 39
EP - 57
LA - fre
UR - http://eudml.org/doc/106559
ER -
References
top- [1] BOSQ D. ( 1991), Modelization, non-parametric estimation and prediction for continuous time processes. In : Roussas, G. (Ed. ), Nonparametric Functional estimation and related Topics, NATO, ASI Series, pp. 509-529. Zbl0737.62032MR1154349
- [2] COOK R.D. ( 1991), Discussion of Li (1991) J. Am. Statis. Ass., 86, 328-332.
- [3] COOK R.D.et YIN X. ( 2001), Dimension reduction and visualization in discriminant analysis, Australian & New-Zealand Journal of Statistics, 43, 147-199. Zbl0992.62056MR1839361
- [4] DAUXOIS J., FERRÉ L. and YAO A.F. ( 2001), Un modèle semi-paramétrique pour variable aléatoire Hilbertienne. C.R. Acad. Sci. Paris, t.327, série I, 947-952. Zbl0996.62035MR1873814
- [5] DAUXOIS J. and POUSSE A. ( 1976), Les analyses factorielles en calcul des probabilités et en statistique : essai d'étude synthétique. Thèse Toulouse III. Zbl0326.62039
- [6] DEVROYE L., GYÖRFI L. and LUGOSI G. ( 1996), A probabilistic theory for pattern recognition, New-York : Springer-Verlag. Zbl0853.68150MR1383093
- [7] DIPILLO P. ( 1979), Biased discriminant analysis : evaluation of the optimum probability of classification, Comm. Statist. Theory Methods, 8, 1447-1458. Zbl0414.62045MR547408
- [8] FERRATY F. and VIEU P. ( 2003), Curves Discrimination : a Non Parametric Approach. Computational and Statistical Data Analysis, 44, 161-173. Zbl05373903MR2020144
- [9] FERRÉ L. and VILLA N. ( 2005), Multi-layer Neural Network with Functional Inputs, soumis à publication.
- [10] FERRÉ L. and YAO A. F. ( 2003), Functional Sliced Inverse Regression analysis. Statistics, 37, 475-488. Zbl1032.62052MR2022235
- [11] FERRÉ L. et YAO A.F. ( 2005), Smoothed Functional Inverse Regression. À paraître dans Statistica Sinica. Zbl1086.62054MR2233905
- [12] FRIEDMAN J. ( 1989), Regularized discriminant analysis, J. Amer. Statist. Assoc., 84, 165-175. MR999675
- [13] HAND D.J. ( 1982), Kernel discriminant analysis, Research Studies Press/Wiley. Zbl0562.62041MR666869
- [14] HASTIE T., TIBSHIRANI R. and BUJA A. ( 1994), Flexible Discriminant Analysis by optimal scoring, J. Amer. Statist. Ass., 89, 1255-1270. Zbl0812.62067MR1310220
- [15] HASTIE T., BUJA A. and TIBSHIRANI R. ( 1995), Penalized Discriminant Analysis, Ann. Statist., 23, p 73-102. Zbl0821.62031MR1331657
- [16] HERNANDEZ A. et VELILLA S. ( 2001), Dimension reduction in nonparametric discriminant analysis, Technical report.
- [ 17] HOERL A.E. and KENNARD R.W. ( 1970a), Ridge regression :biased estimation for non orthogonal problems, Technometrics, 12-1, 55-67. Zbl0202.17205MR370945
- [18] HOERL A.E. and KENNARD R.W. ( 1970b), Ridge regression : Application to non orthogonal problems, Technometrics, 12-2, 69-82. Zbl0202.17206
- [19] HSING T. ( 1999), Nearest Neighbor Inverse Regression, Ann. Statist., 697-731. Zbl0951.62034MR1714711
- [20] JAMES G.M. and HASTIE T.J. ( 2001), Functional linear discriminant analysis for irregularly sampled curves, J.R. Statis. Soc., B, 64, 533-550. Zbl0989.62036MR1858401
- [21] LEURGANS S.E., MOYEED R.A. and SILVERMAN B.W. ( 1993), Canonical Correlation Analysis when the data are curves, J.R. Statis. Soc., B, 55,725-740. Zbl0803.62049MR1223939
- [22] LI K. C. ( 1991), Sliced Inverse Regression for dimension reduction, J. Amer. Statist. Ass., 86, 316-342. Zbl0742.62044MR1137117
- [23] LI K. C. ( 1992), On principal Hessian directions for data visualisation and dimension reduction : another application of Stein's lemma, Ann. Statist., 87, 1025-1039. Zbl0765.62003MR1209564
- [24] LI K.C., ARAGON Y., SHEDDEN K et THOMAS-AGAN C. ( 2003), Dimension reduction for multivariate data, J. Amer. Statist. Ass., 98, 99-109. Zbl1047.62059MR1965677
- [25] RAMSAY J. O. and SILVERMAN B. W. ( 1997), Functional Data Analysis, New-York : Springer Verlag. Zbl0882.62002MR2168993
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.