Classification supervisée en grande dimension. Application à l'agrément de conduite automobile

Jean-Michel Poggi; Christine Tuleau

Revue de Statistique Appliquée (2006)

  • Volume: 54, Issue: 4, page 41-60
  • ISSN: 0035-175X

How to cite

top

Poggi, Jean-Michel, and Tuleau, Christine. "Classification supervisée en grande dimension. Application à l'agrément de conduite automobile." Revue de Statistique Appliquée 54.4 (2006): 41-60. <http://eudml.org/doc/106588>.

@article{Poggi2006,
author = {Poggi, Jean-Michel, Tuleau, Christine},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {41-60},
publisher = {Société française de statistique},
title = {Classification supervisée en grande dimension. Application à l'agrément de conduite automobile},
url = {http://eudml.org/doc/106588},
volume = {54},
year = {2006},
}

TY - JOUR
AU - Poggi, Jean-Michel
AU - Tuleau, Christine
TI - Classification supervisée en grande dimension. Application à l'agrément de conduite automobile
JO - Revue de Statistique Appliquée
PY - 2006
PB - Société française de statistique
VL - 54
IS - 4
SP - 41
EP - 60
LA - fre
UR - http://eudml.org/doc/106588
ER -

References

top
  1. [1] AMATO U., ANTONIADIS A.and DE FEIS I. ( 2005), Dimension reduction in functional regression with applicarions, To appear in Comp. Stat. and Data. Anal. Zbl05381685
  2. [2] ANSALDI N. ( 2002), Contributions des méthodes statistiques à la quantification de l'agrément de conduite, PhD thesis, Marne-la-Vallée. 
  3. [3] BARRON A.R., BIRGÉ L. and MASSART P. ( 1999), Risk bounds for model selection via penalization, Probability Theory and Related Fieds, 113 :301-413. Zbl0946.62036MR1679028
  4. [4] BESSE P. and CARDOT H. ( 2003), Modélisation statistique de données fonctionnelles, in G. Covaert, editor, Analyse de données, Hermes. 
  5. [5] BIAU G., BUNEA F.and WEGKAMP M. ( 2005), Functional classification in Hilbert spaces, IEEE Trans. inf. Theory, 51(6) :2163-2172. Zbl1285.94015MR2235289
  6. [6] BIGOT J. ( 2003), Recalage des signaux et analyse de la variance fonctionnelle par ondelettes; application au domaine biomédical, PhD thesis, Grenoble. 
  7. [7] BREIMAN L., FRIEDMAN J., OLSHEN R.and STONE C. ( 1984), Classification and Regression Trees, Chapman et Hall. Zbl0541.62042MR726392
  8. [8] COIFMAN R.and SAITO N. ( 1964), Constructions of local orthonormal bases for classification and regression, C. R. Acad. Sci. Paris (Ser. 1) : 191-196. Zbl0801.62004
  9. [9] COIFMAN R.and WICKERHAUSER M. ( 1992), Entropy-based algorithms for best basis selection, IEEE Trans. Inform. Theory, 38(2) :713-719. Zbl0849.94005
  10. [10] DAUXOIS J. and POUSSE A. ( 1976), Les analyses factorielles en calcul des probabilités et en statistique : essai d'étude synthétique, PhD thesis, université Toulouse III. Zbl0326.62039
  11. [11] DEVILLE J.C. ( 1974), Méthodes statistiques et numériques de l'analyse harmonique, Annales de l'Insee, 15 :7-97. 
  12. [12] DONOHO D. and JOHNSTONE I. ( 1994), Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81(3) :425-455. Zbl0815.62019MR1311089
  13. [13] DUDOIT S., FRIDLYAND J. and SPEED T. ( 2002), Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97(457) :77-87. Zbl1073.62576MR1963389
  14. [14] FAVRE C. ( 1999), Analyse en normes L1 et L° des distances et des préférences. Planification en analyse sensorielle. Application au confort d'accueil de sièges automobiles, PhD thesis, Université de Rennes II. 
  15. [15] FERRATY F. and VIEU P. ( 2003), Curves discrimination : a nonparametric functional approach, Computational Statistics and Data Analysis, 44(1-2) :161-173. Zbl05373903MR2020144
  16. [16] FERRÉ L. and VILLA N. ( 2005), Discrimination de courbes par régression inverse fonctionnelle, Revue de Statistique Appliquée, LIII(l) :39-57. 
  17. [17] FERRÉ L. and YAO A.F. ( 2003) Functional sliced inverse regression analysis, Statistics, 37(6) :475-488. Zbl1032.62052MR2022235
  18. [18] GHATTAS B. ( 1999), Agrégation d'arbres de classification, Revue de Statistique Appliquée, XLVIII(2) :85-98. 
  19. [19] GHATTAS B. ( 1999), Importance des variables dans les méthodes CART, Revue de modulad, 24 :29-39. 
  20. [20] HASTIE T., BUJA A. and TIBSHIRANI R. ( 1995), Penalized discriminant analysis, Annals of Statistics, 23 :73-102. Zbl0821.62031MR1331657
  21. [21] HASTIE T., TIBSHIRANI R. and FRIEDMAN J.( 2001), The Elements of Statistical Learning, Springer. Zbl0973.62007MR1851606
  22. [22] LEURGANS S., MOYEED R. and SILVERMAN B. ( 1993), Canonical correlation analysis when the data are curves, Journal of the Royal Statistical Society Series B, 55 :725-740. Zbl0803.62049MR1223939
  23. [23] MALLAT S. ( 1998), A wavelet tour of signal processing, Academic Press. Zbl0937.94001MR1614527
  24. [24] MISITI M., MISITI Y., OPPENHEIM G. and POGGI J.-M. ( 2003), Les ondelettes et leurs applications, Hermes. Zbl1167.42300
  25. [25] RAMSAY J. and SILVERMAN B. ( 1997), Functional Data Analysis, Springer. Zbl0882.62002MR2168993
  26. [26] RAMSAY J. and SILVERMAN B. ( 2002), Applied Functional Data Analysis, Springer. Zbl1011.62002MR1910407
  27. [27] ROSSI F. and CONAN-GUEZ B. ( 2005), Functional multi-layer perceptron : a non-linear tool for functional data analysis, Neural networks, 18(1) :45-60. Zbl1085.68134
  28. [28] SAUVÉ M. and TULEAU C. ( 2006), Variable selection through CART, Rapport de recherche, INRIA, 5912 :l-30. Zbl1305.62154
  29. [29] VANNUCCI M., BROWN P.J. and FEARN T. ( 2003), A decision theoretical approach to wavelet regression on curves with a high number of regressors, Journal of Statistical planning and inference, 112 :195-212. Zbl1032.62004MR1961730
  30. [30] VIDAKOVIC B. ( 1999), Statistical modeling by wavelets, Wiley. Zbl0924.62032MR1681904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.