Gruppi finiti i cui sottogruppi sono o subnormali o pronormali

Pierantonio Legovini

Rendiconti del Seminario Matematico della Università di Padova (1977)

  • Volume: 58, page 129-147
  • ISSN: 0041-8994

How to cite

top

Legovini, Pierantonio. "Gruppi finiti i cui sottogruppi sono o subnormali o pronormali." Rendiconti del Seminario Matematico della Università di Padova 58 (1977): 129-147. <http://eudml.org/doc/107649>.

@article{Legovini1977,
author = {Legovini, Pierantonio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subnormal subgroups; pronormal subgroups; Fitting length; Sylow towers; Carter subgroups},
language = {ita},
pages = {129-147},
publisher = {Seminario Matematico of the University of Padua},
title = {Gruppi finiti i cui sottogruppi sono o subnormali o pronormali},
url = {http://eudml.org/doc/107649},
volume = {58},
year = {1977},
}

TY - JOUR
AU - Legovini, Pierantonio
TI - Gruppi finiti i cui sottogruppi sono o subnormali o pronormali
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1977
PB - Seminario Matematico of the University of Padua
VL - 58
SP - 129
EP - 147
LA - ita
KW - subnormal subgroups; pronormal subgroups; Fitting length; Sylow towers; Carter subgroups
UR - http://eudml.org/doc/107649
ER -

References

top
  1. [1] J.L. Alperin, Normalizers of system normalizers, Trans. Am. Math. Soc.113 (1964) 181-188. Zbl0123.02502MR172914
  2. [2] R.W. Carter, On a class of finite soluble groups, Proc. London Math. Soc. (3) 9 (1959) 623-640. Zbl0168.27205MR114859
  3. [3] R.W. Carter, Nilpotent self-normalizing subgroups of soluble groups, Math. Zeit.75 (1961) 136-139. Zbl0168.27301MR123603
  4. [4] R.W. Carter, Nilpotent self-normalizing subgroups and system normadizers, Proc. London Math. Soc. (3) 12 (1962) 535-563. Zbl0106.24602MR140570
  5. [5] R.W. Carter, Normal complements of nilpotent self-normalizing subgroups, Math. Zeit.78 (1962) 149-150. Zbl0100.02704MR142652
  6. [6] G. Ebert S. Bauman, Abnormal chains in finite soluble groups, Jour. Alg.36 (1975) 287-293. Zbl0314.20019MR412271
  7. [7] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, Jour. fur Math., Bd 198, Heft 2 (1957) 87-92. Zbl0077.25003MR91277
  8. [8] D. Gorenstein, Finite groups, Harper & Row (1968). Zbl0185.05701MR231903
  9. [9] D. Gorenstein, Finite groups which admit an automorphism with few orbits, Canad. Jour. Math.12 (1960) 73-100. Zbl0244.20015MR109182
  10. [10] B. Huppert, Endliche gruppenI, Springer Verlag (1967). Zbl0217.07201MR224703
  11. [11] N. Jacobson, Basic algebra1, Freeman (1974). Zbl0284.16001MR356989
  12. [12] A. Mann, System normalizers and subnormalizers, Proc. London Math. Soc. (3) 20 (1970) 123-143. Zbl0214.04402MR257224
  13. [13] A. Mann, A criterion for pronormality, Jour. London Math. Soc.44 (1969) 175-176. Zbl0165.34003MR238954
  14. [14] T.A. Peng, Finite groups with pronormal subgroups, Proc. Amer. Math. Soc.20 (1969) 232-234. Zbl0167.02302MR232850
  15. [15] L. Rédei, Das schiefe Produkt in der Gruppentheorie, Comm. Math. Helvetici20 (1947) 225-264. Zbl0035.01503MR21933
  16. [16] J.S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. (3) 17 (1967) 447-469. Zbl0153.03602MR212092
  17. [17] H. Wielandt, Kriterien für subnormalität in endlichen Gruppen, Math. Zeit.138 (1974) 199-203. Zbl0275.20041MR357604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.