# On non-periodic groups whose finitely generated subgroups are either permutable or pronormal

L. A. Kurdachenko; I. Ya. Subbotin; T. I. Ermolkevich

Mathematica Bohemica (2013)

- Volume: 138, Issue: 1, page 61-74
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topKurdachenko, L. A., Subbotin, I. Ya., and Ermolkevich, T. I.. "On non-periodic groups whose finitely generated subgroups are either permutable or pronormal." Mathematica Bohemica 138.1 (2013): 61-74. <http://eudml.org/doc/252497>.

@article{Kurdachenko2013,

abstract = {The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group $G$ is called a generalized radical, if $G$ has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the followingTheorem. Let $G$ be a locally generalized radical group whose finitely generated subgroups are either pronormal or permutable. If $G$ is non-periodic then every subgroup of $G$ is permutable.},

author = {Kurdachenko, L. A., Subbotin, I. Ya., Ermolkevich, T. I.},

journal = {Mathematica Bohemica},

keywords = {pronormal subgroup; permutable subgroup; finitely generated subgroup; abnormal subgroup; generalized radical groups; pronormal subgroups; permutable subgroups; finitely generated subgroups; abnormal subgroups},

language = {eng},

number = {1},

pages = {61-74},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On non-periodic groups whose finitely generated subgroups are either permutable or pronormal},

url = {http://eudml.org/doc/252497},

volume = {138},

year = {2013},

}

TY - JOUR

AU - Kurdachenko, L. A.

AU - Subbotin, I. Ya.

AU - Ermolkevich, T. I.

TI - On non-periodic groups whose finitely generated subgroups are either permutable or pronormal

JO - Mathematica Bohemica

PY - 2013

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 138

IS - 1

SP - 61

EP - 74

AB - The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group $G$ is called a generalized radical, if $G$ has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the followingTheorem. Let $G$ be a locally generalized radical group whose finitely generated subgroups are either pronormal or permutable. If $G$ is non-periodic then every subgroup of $G$ is permutable.

LA - eng

KW - pronormal subgroup; permutable subgroup; finitely generated subgroup; abnormal subgroup; generalized radical groups; pronormal subgroups; permutable subgroups; finitely generated subgroups; abnormal subgroups

UR - http://eudml.org/doc/252497

ER -

## References

top- Baer, R., Arrangement of subgroups and the structure of a group, Sitzungber. Heidelberger Akad. Wiss. 2 (1933), 12-17 German. (1933)
- Dedekind, R., Groups with all normal subgroups, German Math. Ann. 48 (1897), 548-561. (1897)
- Dixon, M. R., Subbotin, I. Ya., Groups with finiteness conditions on some subgroup systems: a contemporary stage, Algebra Discrete Math. No. 4 2009 (2009), 29-54. (2009) Zbl1199.20051MR2681481
- Ebert, G., Bauman, S., 10.1016/0021-8693(75)90103-9, J. Algebra 36 (1975), 287-293. (1975) MR0412271DOI10.1016/0021-8693(75)90103-9
- Falco, M. De, Kurdachenko, L. A., Subbotin, I. Ya., Groups with only abnormal and subnormal subgroups, Atti Sem. Mat. Fis. Univ. Modena 47 (1998), 435-442. (1998) Zbl0918.20017MR1665935
- Gruenberg, K. W., The Engel elements of soluble groups, Illinois J. Math. 3 (1959), 151-168. (1959) MR0104730
- Fattahi, A., 10.1016/0021-8693(74)90019-2, J. Algebra 28 (1974), 15-19. (1974) Zbl0274.20022MR0335628DOI10.1016/0021-8693(74)90019-2
- Hall, P., Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787-801. (1958) Zbl0084.25602MR0105441
- Kurdachenko, L. A., Otal, J., Subbotin, I. Ya., Artinian Modules over Group Rings, Birkhaüser, Basel (2007). (2007) Zbl1110.16001MR2270897
- Kurdachenko, L. A., Smith, H., 10.1016/j.jpaa.2004.08.005, J. Pure Appl. Algebra 196 (2005), 271-278. (2005) Zbl1078.20026MR2110525DOI10.1016/j.jpaa.2004.08.005
- Kurdachenko, L. A., Subbotin, I. Ya., Chupordya, V. A., On some near to nilpotent groups, Fundam. Appl. Math. 14 (2008), 121-134. (2008) MR2533617
- Kurdachenko, L. A., Subbotin, I. Ya., Ermolkevich, T. I., 10.1142/S1793557111000381, Asian-European J. Math. 4 (2011), 459-473. (2011) Zbl1256.20038MR2842657DOI10.1142/S1793557111000381
- Kuzennyi, N. F., Subbotin, I. Ya., New characterization of locally nilpotent $\overline{IH}$-groups, Russian Ukrain. Mat. J. 40 (1988), 322-326. (1988) MR0952119
- Kuzennyi, N. F., Subbotin, I. Ya., Locally soluble groups in which all infinite subgroups are pronormal, Russian Izv. Vyssh. Ucheb. Zaved., Mat. 11 (1988), 77-79. (1988) MR0983287
- Legovini, P., Finite groups whose subgroups are either subnormal or pronormal, Italian Rend. Semin. Mat. Univ. Padova 58 (1977), 129-147. (1977) MR0543135
- Legovini, P., Finite groups whose subgroups are either subnormal or pronormal. II, Italian Rend. Semin. Mat. Univ. Padova 65 (1981), 47-51. (1981) Zbl0482.20013MR0653281
- Miller, G. A., Moreno, H. C., 10.1090/S0002-9947-1903-1500650-9, Trans. Amer. Math. Soc. 4 (1903), 389-404. (1903) MR1500650DOI10.1090/S0002-9947-1903-1500650-9
- Olshanskii, A. Yu., Geometry of Defining Relations in Groups, Kluwer Acad. Publ., Dordrecht (1991). (1991) MR1191619
- Peng, T. A., 10.1090/S0002-9939-1969-0232850-1, Proc. Amer. Math. Soc. 20 (1969), 232-234. (1969) MR0232850DOI10.1090/S0002-9939-1969-0232850-1
- Plotkin, B. I., Radical groups, Russian Mat. Sbornik 37 (1955), 507-526. (1955) Zbl0128.25402MR0075208
- Rose, J. S., 10.1007/BF01110717, Math. Z. 106 (1968), 97-112. (1968) Zbl0169.03402MR0252516DOI10.1007/BF01110717
- Schmidt, O. Yu., Groups whose all subgroups are special, Russian Mat. Sbornik 31 (1925), 366-372. (1925)
- Schmidt, R., Subgroups Lattices of Groups, Walter de Gruyter, Berlin (1994). (1994)
- Shemetkov, L. A., Formations of Finite Groups, Russian Nauka, Moskva (1978). (1978) Zbl0496.20014MR0519875
- Stonehewer, S. E., 10.1007/BF01111111, Math. Z. 126 (1972), 1-16. (1972) Zbl0219.20021MR0294510DOI10.1007/BF01111111
- Zacher, G., Finite soluble groups in which composition subgroups are quasi-normal, Italian Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 (1964), 150-154. (1964)

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.