The λ -inductive topology on abelian p -groups

Luigi Salce

Rendiconti del Seminario Matematico della Università di Padova (1978)

  • Volume: 59, page 167-177
  • ISSN: 0041-8994

How to cite

top

Salce, Luigi. "The $\lambda $-inductive topology on abelian $p$-groups." Rendiconti del Seminario Matematico della Università di Padova 59 (1978): 167-177. <http://eudml.org/doc/107674>.

@article{Salce1978,
author = {Salce, Luigi},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {p-adic topology; lambda-adic topology; Hausdorff completion; inductive topology; lambda-inductive topology},
language = {eng},
pages = {167-177},
publisher = {Seminario Matematico of the University of Padua},
title = {The $\lambda $-inductive topology on abelian $p$-groups},
url = {http://eudml.org/doc/107674},
volume = {59},
year = {1978},
}

TY - JOUR
AU - Salce, Luigi
TI - The $\lambda $-inductive topology on abelian $p$-groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1978
PB - Seminario Matematico of the University of Padua
VL - 59
SP - 167
EP - 177
LA - eng
KW - p-adic topology; lambda-adic topology; Hausdorff completion; inductive topology; lambda-inductive topology
UR - http://eudml.org/doc/107674
ER -

References

top
  1. [1] P. Crawley, On the structure of a class of abelian p-groups, Symposia Math., 20 (1978). MR565596
  2. [2] D.O. Cutler - R.W. Stringall, A topology for primary abelian groups, Studies on Abelian Groups, Paris (1968), pp. 93-100. Zbl0206.03403MR245671
  3. [3] P.F. Dubois, Generally pα-torsion complete abelian groups, Trans. Amer. Math. Soc., 139 (1971), pp. 245-255. Zbl0232.20108
  4. [4] L. Fuchs, Infinite Abelian Groups, vol. 2, New York-London, 1973. 
  5. [5] M.M. Le Borgne, Groupes λ-separables, C. R. Acad. Sci. Paris, 281 (1975), pp. 415-417. Zbl0337.20023
  6. [6] R.C. Linton, On fully invariant subgroups of primary abelian groups, Michigan Math. J., 22 (1975), pp. 281-284. Zbl0308.20041MR396788
  7. [7] R.C. Linton - C. MEGIBBEN, Extensions of totally projective groups, Proc. Amer. Math. Soc., 61-1 (1977), pp. 35-38. Zbl0386.20028MR450425
  8. [8] C. Megibben, A generalization of the classical theory of primary groups, Tohoku Math. J., 22 (1970), pp. 347-356. Zbl0222.20017MR294491
  9. [9] C. Megibben, On pα-high injectives, Math. Z., 122 (1971), pp. 104-110. Zbl0235.20051
  10. [10] R. Mines, A family of functor defined on generalized primary groups, PaificJ. Math., 26 (1968), pp. 349-360. Zbl0165.34104MR238958
  11. [11] R.S. Pierce, Homomorphisms of primary groups, Topics in Abelian Groups, Chicago (1963), pp. 215-310. MR177035
  12. [12] K.D. Wallace, Cλ-groups and λ-basic subgroups, Pacific J. Math., 43 (1972), pp. 799-809. Zbl0246.20045

NotesEmbed ?

top

You must be logged in to post comments.