The λ -inductive topology on abelian p -groups

Luigi Salce

Rendiconti del Seminario Matematico della Università di Padova (1978)

  • Volume: 59, page 167-177
  • ISSN: 0041-8994

How to cite

top

Salce, Luigi. "The $\lambda $-inductive topology on abelian $p$-groups." Rendiconti del Seminario Matematico della Università di Padova 59 (1978): 167-177. <http://eudml.org/doc/107674>.

@article{Salce1978,
author = {Salce, Luigi},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {p-adic topology; lambda-adic topology; Hausdorff completion; inductive topology; lambda-inductive topology},
language = {eng},
pages = {167-177},
publisher = {Seminario Matematico of the University of Padua},
title = {The $\lambda $-inductive topology on abelian $p$-groups},
url = {http://eudml.org/doc/107674},
volume = {59},
year = {1978},
}

TY - JOUR
AU - Salce, Luigi
TI - The $\lambda $-inductive topology on abelian $p$-groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1978
PB - Seminario Matematico of the University of Padua
VL - 59
SP - 167
EP - 177
LA - eng
KW - p-adic topology; lambda-adic topology; Hausdorff completion; inductive topology; lambda-inductive topology
UR - http://eudml.org/doc/107674
ER -

References

top
  1. [1] P. Crawley, On the structure of a class of abelian p-groups, Symposia Math., 20 (1978). MR565596
  2. [2] D.O. Cutler - R.W. Stringall, A topology for primary abelian groups, Studies on Abelian Groups, Paris (1968), pp. 93-100. Zbl0206.03403MR245671
  3. [3] P.F. Dubois, Generally pα-torsion complete abelian groups, Trans. Amer. Math. Soc., 139 (1971), pp. 245-255. Zbl0232.20108
  4. [4] L. Fuchs, Infinite Abelian Groups, vol. 2, New York-London, 1973. 
  5. [5] M.M. Le Borgne, Groupes λ-separables, C. R. Acad. Sci. Paris, 281 (1975), pp. 415-417. Zbl0337.20023
  6. [6] R.C. Linton, On fully invariant subgroups of primary abelian groups, Michigan Math. J., 22 (1975), pp. 281-284. Zbl0308.20041MR396788
  7. [7] R.C. Linton - C. MEGIBBEN, Extensions of totally projective groups, Proc. Amer. Math. Soc., 61-1 (1977), pp. 35-38. Zbl0386.20028MR450425
  8. [8] C. Megibben, A generalization of the classical theory of primary groups, Tohoku Math. J., 22 (1970), pp. 347-356. Zbl0222.20017MR294491
  9. [9] C. Megibben, On pα-high injectives, Math. Z., 122 (1971), pp. 104-110. Zbl0235.20051
  10. [10] R. Mines, A family of functor defined on generalized primary groups, PaificJ. Math., 26 (1968), pp. 349-360. Zbl0165.34104MR238958
  11. [11] R.S. Pierce, Homomorphisms of primary groups, Topics in Abelian Groups, Chicago (1963), pp. 215-310. MR177035
  12. [12] K.D. Wallace, Cλ-groups and λ-basic subgroups, Pacific J. Math., 43 (1972), pp. 799-809. Zbl0246.20045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.