The c -topology on abelian p -groups

G. D'Este

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1980)

  • Volume: 7, Issue: 2, page 241-256
  • ISSN: 0391-173X

How to cite

top

D'Este, G.. "The $\oplus _c$-topology on abelian $p$-groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.2 (1980): 241-256. <http://eudml.org/doc/83837>.

@article{DEste1980,
author = {D'Este, G.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {abelian p-group; direct sum of cyclic groups; complete Hausdorff topological group; Hausdorff completion; large subgroups; complete groups; separable projective p-group; thick groups},
language = {eng},
number = {2},
pages = {241-256},
publisher = {Scuola normale superiore},
title = {The $\oplus _c$-topology on abelian $p$-groups},
url = {http://eudml.org/doc/83837},
volume = {7},
year = {1980},
}

TY - JOUR
AU - D'Este, G.
TI - The $\oplus _c$-topology on abelian $p$-groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1980
PB - Scuola normale superiore
VL - 7
IS - 2
SP - 241
EP - 256
LA - eng
KW - abelian p-group; direct sum of cyclic groups; complete Hausdorff topological group; Hausdorff completion; large subgroups; complete groups; separable projective p-group; thick groups
UR - http://eudml.org/doc/83837
ER -

References

top
  1. [1] K. Benabdallah - R. Wilson, Thick groups and essentially finitely indecomposable groups, Canad. J. Math., 30, no. 3 (1978), pp. 650-654. Zbl0399.20049MR492006
  2. [2] N. Bourbaki, Topology Générale, Chapitre 1 à 4, Hermann, Paris, 1971. 
  3. [3] B. Charles, Sous-groupes functoriels et topologies. Studies on abelian groups, Paris, 1968, pp. 75-92. Zbl0179.32701MR240195
  4. [4] L. Fuchs, Infinite Abelian Groups, Vol. 1 and 2, London - New York, 1971 and 1973. 
  5. [5] L. Fuchs - J.M. Irwin, On pω+1-projective p-groups, Proc. London Math. Soc., (3), 30 (1975), pp. 459-470. Zbl0324.20059
  6. [6] L. Fuchs - L. Salce, Abelian p-groups of not limit length, Comment. Math. Univ. St. Pauli, 26 (1976), pp. 25-33. Zbl0366.20037
  7. [7] P.D. Hill - C.K. Megibben, Quasi-closed primary groups, Acta Math. Acad. Sci. Hungar., 16 (1965), pp. 271-274. Zbl0209.33204MR191957
  8. [8] J.M. Irwin - J.D. O'Neill, On direct products of abelian groups, Canad. J. Math., 22, no. 3 (1970), pp. 525-544. Zbl0224.20045MR262357
  9. [9] E.L. Lady, Countable torsion products of abelian p-groups, Proc. Amer. Math. Soc., 37, no. 1 (1973), pp. 10-16. Zbl0255.20034MR313420
  10. [10] C. Megibben, Large subgroups and small homomorphisms, Michigan Math. J., 13 (1966), pp. 153-160. Zbl0166.02502MR195939
  11. [11] R. Mines, A family of functors defined on generalized primary groups, Pacific J. Math., 26 (1968), pp. 349-360. Zbl0165.34104MR238958
  12. [12] R.J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups, Chicago, 1963, pp. 121-171. MR169913
  13. [13] L. Salce, The λ-inductive topology on abelian p-groups, Rend. Sem. Mat. Univ. Padova, 59 (1978), pp. 167-177. Zbl0453.20044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.