Teoremi di esistenza e unicità in elastostatica finita
Rendiconti del Seminario Matematico della Università di Padova (1978)
- Volume: 60, page 165-181
- ISSN: 0041-8994
Access Full Article
topHow to cite
topValent, Tullio. "Teoremi di esistenza e unicità in elastostatica finita." Rendiconti del Seminario Matematico della Università di Padova 60 (1978): 165-181. <http://eudml.org/doc/107696>.
@article{Valent1978,
author = {Valent, Tullio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {local existence; problem of place; finite elastostatics},
language = {ita},
pages = {165-181},
publisher = {Seminario Matematico of the University of Padua},
title = {Teoremi di esistenza e unicità in elastostatica finita},
url = {http://eudml.org/doc/107696},
volume = {60},
year = {1978},
}
TY - JOUR
AU - Valent, Tullio
TI - Teoremi di esistenza e unicità in elastostatica finita
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1978
PB - Seminario Matematico of the University of Padua
VL - 60
SP - 165
EP - 181
LA - ita
KW - local existence; problem of place; finite elastostatics
UR - http://eudml.org/doc/107696
ER -
References
top- [1] R.A. Adams, Sobolev spaces, Academic Press (1975). Zbl0314.46030MR450957
- [2] F.E. Browder, Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sc. U.S.A., 45 (1959), pp. 365-372. Zbl0093.29402MR132913
- [3] F.E. Browder, A priori estimates for solutions of elliptic boundary value problems, Indag. Math., 22 (1960), pp. 145-169. Zbl0096.30202MR123819
- [4] S. Campanato, Equazioni ellittiche del II ordine e spazi £(2,λ), Annali di Matematica, 69 (1965), pp. 321-381. Zbl0145.36603
- [5] J. Dieudonné, Eléments d'analyse, vol. 3, Gauthier-Villars (1970). Zbl0208.31802MR270377
- [6] G. Fichera, Existence Theorems in Elasticity, Handbuch der Physik, Bd. VIA/2, Springer-Verlag (1972).
- [7] A. Friedmann, Partial differential equations, Holt, Rinehart and Winston, Inc. (1969). Zbl0224.35002MR445088
- [8] W. Herewicz - H. Wallman, Dimension Theory, Princeton (1948). Zbl0036.12501
- [9] M. Krasnoselskij et al., Integral operators in spaces of summable functions, Noordhoff Int. Publ. Leyden (1976). Zbl0312.47041MR385645
- [10] H. Meisters - C. Olech, Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J., 30 (1963), pp. 63-80. Zbl0112.37702MR143921
- [11] J. Ne, Les méthodes directes en théorie des equations elliptiques, Masson et C.ie Ed. (1967). MR227584
- [12] C.G. Simader, On Dirichlet's boundary valúe problem, Lectur Notes in Math., Springer-Verlag (1972). Zbl0242.35027
- [13] F. Stoppelli, Un teorema di esistenza e di unicità relativo alle equazioni dell'elastostatica isoterma per deformazioni finite, Ricerche Matematiche, 3 (1954), pp. 247-267. Zbl0058.39701MR74237
- [14] C. Truesdell, Introduction à la mécanique rationnelle des milieux continus, Masson et C.ie Ed. (1974).
- [15] T. Valent, Sulla differenziabilità dell'operatore di Nemytsky, Rend. Acc. Naz. Lincei, 65, fasc. 1-2 (1978). Zbl0424.35084MR571026
- [16] T. Valent, Osservazioni sulla linearizzazione di un operatore differenziale, Rend. Acc. Naz. Lincei, 65, fasc. 3-4 (1978). Zbl0424.35085
- [17] T. Valent - G. ZAMPIERI, Sulla differenziabilità di un operatore legato a una classe di sistemi differenziali qnasi-lineari, Rend. Sem. Mat. Padova, 57 (1977), pp. 311-322. Zbl0402.35027MR526198
- [18] W. Van Buren, On the existence and uniqueness of solutions to boundary value problems in finite elasticity, Thesis, Dep. ot Math., Carnegie-Mellon University, 1968. Research Report 68-ID7 - MEKMA-RI, Westinghouse Research Laboratories, Pittsburgh, Pa. (1968).
- [19] C.C. Wang - C. TRUESDELL, Introduction to rational elasticity, Noordhoff, Groningen (1973). Zbl0308.73001MR468442
Citations in EuDML Documents
top- Jean-Louis Davet, Justification de modèles de plaques non linéaires pour des lois de comportement générales
- Tullio Valent, A property of multiplication in Sobolev spaces. Some applications
- P. Quintela-Estevez, Critical points in the energy of hyperelastic materials
- M. Lanza De Cristoforis, T. Valent, On Neumann's problem for a quasilinear differential system of the finite elastostatics type. Local theorems of existence and uniqueness
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.