Teoremi di esistenza e unicità in elastostatica finita

Tullio Valent

Rendiconti del Seminario Matematico della Università di Padova (1978)

  • Volume: 60, page 165-181
  • ISSN: 0041-8994

How to cite

top

Valent, Tullio. "Teoremi di esistenza e unicità in elastostatica finita." Rendiconti del Seminario Matematico della Università di Padova 60 (1978): 165-181. <http://eudml.org/doc/107696>.

@article{Valent1978,
author = {Valent, Tullio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {local existence; problem of place; finite elastostatics},
language = {ita},
pages = {165-181},
publisher = {Seminario Matematico of the University of Padua},
title = {Teoremi di esistenza e unicità in elastostatica finita},
url = {http://eudml.org/doc/107696},
volume = {60},
year = {1978},
}

TY - JOUR
AU - Valent, Tullio
TI - Teoremi di esistenza e unicità in elastostatica finita
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1978
PB - Seminario Matematico of the University of Padua
VL - 60
SP - 165
EP - 181
LA - ita
KW - local existence; problem of place; finite elastostatics
UR - http://eudml.org/doc/107696
ER -

References

top
  1. [1] R.A. Adams, Sobolev spaces, Academic Press (1975). Zbl0314.46030MR450957
  2. [2] F.E. Browder, Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sc. U.S.A., 45 (1959), pp. 365-372. Zbl0093.29402MR132913
  3. [3] F.E. Browder, A priori estimates for solutions of elliptic boundary value problems, Indag. Math., 22 (1960), pp. 145-169. Zbl0096.30202MR123819
  4. [4] S. Campanato, Equazioni ellittiche del II ordine e spazi £(2,λ), Annali di Matematica, 69 (1965), pp. 321-381. Zbl0145.36603
  5. [5] J. Dieudonné, Eléments d'analyse, vol. 3, Gauthier-Villars (1970). Zbl0208.31802MR270377
  6. [6] G. Fichera, Existence Theorems in Elasticity, Handbuch der Physik, Bd. VIA/2, Springer-Verlag (1972). 
  7. [7] A. Friedmann, Partial differential equations, Holt, Rinehart and Winston, Inc. (1969). Zbl0224.35002MR445088
  8. [8] W. Herewicz - H. Wallman, Dimension Theory, Princeton (1948). Zbl0036.12501
  9. [9] M. Krasnoselskij et al., Integral operators in spaces of summable functions, Noordhoff Int. Publ. Leyden (1976). Zbl0312.47041MR385645
  10. [10] H. Meisters - C. Olech, Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J., 30 (1963), pp. 63-80. Zbl0112.37702MR143921
  11. [11] J. Ne, Les méthodes directes en théorie des equations elliptiques, Masson et C.ie Ed. (1967). MR227584
  12. [12] C.G. Simader, On Dirichlet's boundary valúe problem, Lectur Notes in Math., Springer-Verlag (1972). Zbl0242.35027
  13. [13] F. Stoppelli, Un teorema di esistenza e di unicità relativo alle equazioni dell'elastostatica isoterma per deformazioni finite, Ricerche Matematiche, 3 (1954), pp. 247-267. Zbl0058.39701MR74237
  14. [14] C. Truesdell, Introduction à la mécanique rationnelle des milieux continus, Masson et C.ie Ed. (1974). 
  15. [15] T. Valent, Sulla differenziabilità dell'operatore di Nemytsky, Rend. Acc. Naz. Lincei, 65, fasc. 1-2 (1978). Zbl0424.35084MR571026
  16. [16] T. Valent, Osservazioni sulla linearizzazione di un operatore differenziale, Rend. Acc. Naz. Lincei, 65, fasc. 3-4 (1978). Zbl0424.35085
  17. [17] T. Valent - G. ZAMPIERI, Sulla differenziabilità di un operatore legato a una classe di sistemi differenziali qnasi-lineari, Rend. Sem. Mat. Padova, 57 (1977), pp. 311-322. Zbl0402.35027MR526198
  18. [18] W. Van Buren, On the existence and uniqueness of solutions to boundary value problems in finite elasticity, Thesis, Dep. ot Math., Carnegie-Mellon University, 1968. Research Report 68-ID7 - MEKMA-RI, Westinghouse Research Laboratories, Pittsburgh, Pa. (1968). 
  19. [19] C.C. Wang - C. TRUESDELL, Introduction to rational elasticity, Noordhoff, Groningen (1973). Zbl0308.73001MR468442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.