### A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This article is devoted to the presentation of a new contact algorithm for bodies undergoing finite deformations. We only address the kinematic aspect of the contact problem, that is the numerical treatment of the non-intersection constraint. In consequence, mechanical aspects like friction, adhesion or wear are not investigated and we restrict our analysis to the simplest frictionless case. On the other hand, our method allows us to treat contacts and self-contacts, thin or non-thin structures...

A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various...

A new Schwarz method for nonlinear systems is presented, constituting the multiplicative variant of a straightforward additive scheme. Local convergence can be guaranteed under suitable assumptions. The scheme is applied to nonlinear acoustic-structure interaction problems. Numerical examples validate the theoretical results. Further improvements are discussed by means of introducing overlapping subdomains and employing an inexact strategy for the local solvers.

We prove that the critical points of the 3d nonlinear elasticity functional on shells of small thickness h and around the mid-surface S of arbitrary geometry, converge as h → 0 to the critical points of the von Kármán functional on S, recently proposed in [Lewicka et al., Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear)]. This result extends the statement in [Müller and Pakzad, Comm. Part. Differ. Equ.33 (2008) 1018–1032], derived for the case of plates when $S\subset {\mathbb{R}}^{2}$. The convergence holds provided...

The author introduces a global measure of initial deflection given by the energy norm. Solving the formulated minimization problem with a subsidiary condition the most dangerous initial deflection shape is obtained. The theoretical results include a wide range of stability type structural problems.

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...