Integral characterization of functionals defined on spaces of B V functions

Francesco Ferro

Rendiconti del Seminario Matematico della Università di Padova (1979)

  • Volume: 61, page 177-201
  • ISSN: 0041-8994

How to cite

top

Ferro, Francesco. "Integral characterization of functionals defined on spaces of $BV$ functions." Rendiconti del Seminario Matematico della Università di Padova 61 (1979): 177-201. <http://eudml.org/doc/107714>.

@article{Ferro1979,
author = {Ferro, Francesco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {functions of bounded variations; integral functionals},
language = {eng},
pages = {177-201},
publisher = {Seminario Matematico of the University of Padua},
title = {Integral characterization of functionals defined on spaces of $BV$ functions},
url = {http://eudml.org/doc/107714},
volume = {61},
year = {1979},
}

TY - JOUR
AU - Ferro, Francesco
TI - Integral characterization of functionals defined on spaces of $BV$ functions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1979
PB - Seminario Matematico of the University of Padua
VL - 61
SP - 177
EP - 201
LA - eng
KW - functions of bounded variations; integral functionals
UR - http://eudml.org/doc/107714
ER -

References

top
  1. [1] O. Caligaris - F. Ferro - P. Oliva, Sull'esistenza del minimo per problemi di calcolo delle variazioni relativi ad archi di variazione limitata, Boll. Un. Mat. Ital., (5), 14-B (1977), pp. 340-369.- Zbl0357.49002MR463998
  2. [2] O. Caligaris - P. Oliva, Problemi di Bolza per archi di variazione limitata ed estensione di funzionali variazionali, Boll. Un. Mat. Ital., (5), 14-B (1977), pp. 772-785. Zbl0438.49014MR477947
  3. [3] O. Caligaris - P. Oliva, Sulla caratterizzazione di problemi del calcolo delle variazioni per funzioni di variazione limitata, Boll. Un. Mat. Ital., to appear. Zbl0378.49009
  4. [4] F. Ferro, Sul minimo di funzionali definiti sullo spazio delle funzioni di variazione limitata in n dimensioni, Ann. Mat. Pura Appl., IV, 117 (1978), pp. 153-171. Zbl0396.49014
  5. [5] F. Ferro, Functionals defined on functions of bounded variation in Rn and the Lebesgue area, SIAM J. Control Optimization, 16, no. 5 (Sept. 1978). Zbl0382.46017MR505379
  6. [6] F. Ferro, Variational functionals defined on spaces of BV functions and their dependence on boundary data, Ann. Mat. Pura Appl., to appear. Zbl0434.46027MR565071
  7. [7] J. Necas, Les méthodes directes en théorie des equations elliptiques, Masson et Cie, Paris; Academia, Editeurs, Prague, 1967. MR227584
  8. [8] R.T. Rockafellar, Convex analysis, Princeton Univ. Press, 1970. Zbl0193.18401MR274683
  9. [9] R.T. Rockafellar, Integrals which are convex functionals II, Pacific J. Math., 39 (1971), pp. 439-469. Zbl0236.46031MR310612
  10. [10] R.T. Rockafellar, Dual problem of Lagrange for arcs of bounded variation, in Calculus of variations and control theory, D. L. Russel ed., Academic Press, New York, 1976; Proc. of a Conference of the Mathematical Research Center, University of Wisconsin, Madison, September 1975. Zbl0352.49005MR482468
  11. [11] R.T. Rockefellar, Integral functionals, normal integrands and measurable selections, in Non linear operators and the Calculus of Variations, Lecture Notes in Mathematics, no. 543, Springer-Verlag, Berlin - Heidelberg - New York, 1976. Zbl0374.49001MR512209
  12. [12] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 101 (1961), pp. 139-167. Zbl0102.04601MR138018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.