Piani di traslazione derivabili

Guglielmo Lunardon

Rendiconti del Seminario Matematico della Università di Padova (1979)

  • Volume: 61, page 271-284
  • ISSN: 0041-8994

How to cite

top

Lunardon, Guglielmo. "Piani di traslazione derivabili." Rendiconti del Seminario Matematico della Università di Padova 61 (1979): 271-284. <http://eudml.org/doc/107721>.

@article{Lunardon1979,
author = {Lunardon, Guglielmo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {ita},
pages = {271-284},
publisher = {Seminario Matematico of the University of Padua},
title = {Piani di traslazione derivabili},
url = {http://eudml.org/doc/107721},
volume = {61},
year = {1979},
}

TY - JOUR
AU - Lunardon, Guglielmo
TI - Piani di traslazione derivabili
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1979
PB - Seminario Matematico of the University of Padua
VL - 61
SP - 271
EP - 284
LA - ita
UR - http://eudml.org/doc/107721
ER -

References

top
  1. [1] A.A. Albert, The finite planes of Ostrom, Bol. Soc. Mat. Mexicana, 11 (1966), pp. 1-13. Zbl0157.27003MR231271
  2. [2] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationgruppe, Math. Z., 60 (1954), pp. 156-186. Zbl0056.38503MR63056
  3. [3] A. Barlotti, On the definition of Baer subplanes of infinite planes, J. Geometry, 3 (1973), pp. 87-92. Zbl0252.50027MR341272
  4. [4] A. Barlotti, Representation and construction of projective planes and other geometric structures from projective spaces, Jber. Deutsch. Math.-Verein, 77 (1975), pp. 28-38. Zbl0319.50024MR500487
  5. [5] R.H. Bruck, Construction problems in finite projective spaces, in Combinatorial Mathematics and its Applications (Proc. Conf. Univ. North Carolina, Chapel Hill, N.C., 1967), Chapel Hill (1969), pp. 426-514. Zbl0206.23402MR250182
  6. [6] R.H. Bruck - R. C. BosE, The construction of translation planes from projective spaces, J. Algebra, 1 (1964), pp. 85-102. Zbl0117.37402MR161206
  7. [7] R.H. Bruck - R. C. BOSE, Linear representations of projective planes in projective spaces, J. Algebra4 (1966), pp. 117-172. Zbl0141.36801MR196590
  8. [8] A. Bruen, Spreads and a conjecture of Bruck and Bose, J. Algebra, 23 (1972), pp. 519-537. Zbl0245.50030MR308923
  9. [9] A. Bruen - J. A. THAS, Partial spreads, packing and hermitian manifolds in PG(3, q), Math. Z., 151 (1976), pp. 207-214. Zbl0322.50008MR423187
  10. [10] J. Cofman, Baer subplanes of affine and projective planes, Math. Z., 126 (1972), pp. 339-344. Zbl0222.50027MR305229
  11. [11] J. Cofman, Baer subplanes and Baer collineations of derivable projective planes, Abh. Math. Sem. Hamburg, 44 (1975), pp. 187-192. Zbl0316.50007MR400028
  12. [12] P. Dembowski, Finite geometries, Springer-Verlag (1968). Zbl0159.50001MR233275
  13. [13] J.W. Freeman, Reguli and pseudo-reguli in PG(3, q2), in corso di stampa su Geometriae Dedicata. Zbl0436.51005
  14. [14] D.R. Hughes - F. C. PIPER, Projective planes, Springer-Verlag (1972). Zbl0267.50018MR333959
  15. [15] D.E. Knuth, Finite semifields and projective planes, J. Algebra, 2 (1965), pp. 182-217. Zbl0128.25604MR175942
  16. [16] G. Lunardon, Proposizioni configurazionali in una classe di fibrazioni, Boll. U.M.I., 13-A (1976), pp. 404-413. Zbl0345.50012MR430956
  17. [17] H. Lüneburg, Die Suzukigruppen und ihre Geometrien, Lectures Notes in Mathematics10, Springer (1965). Zbl0136.01502MR207820
  18. [18] T.G. Ostrom, Semitranslation planes, Trans. Amer. Math. Soc., 111 (1964), pp. 1-18. Zbl0117.37303MR159255
  19. [19] T.G. Ostrom, Nets with critical deliciency, Pacif. J. Math., 14 (1964), pp. 1381-1387. Zbl0135.39302MR171215
  20. [20] T.G. Ostrom, Derivable nets, Canad. Math. Bull., 8 (1965), pp. 601-613. Zbl0137.40203MR194980
  21. [21] T.G. Ostrom, Finite translation planes, Lectures Notes in Mathematics, Springer (1970). Zbl0205.49901MR275274
  22. [22] O. Prohaska, Endliche ableitbare affinen Ebenen, Geometriae Dedicata, 1 (1972), pp. 6-17. Zbl0243.50009MR305227
  23. [23] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), pp. 1-76. Zbl0128.15002MR169117
  24. [24] R. Vincenti, Fibrazioni di un S3,q indotte da fibrazioni di un S3,q2 e rappresentazione spaziale dei sottopiani di Baer di un piano proiettivo, in corso di stampa sugli Atti Sem. Mat. Fis. Univ. Modena. 
  25. [25] M. Walker, The collineation groups of derived translation planes, Geometriae Dedicata, 5 (1976), pp. 87-95. Zbl0329.50001MR470824
  26. [26] M. Walker, A class of translations planes, Geometriae Dedicata, 5 (1976), pp. 135-146. Zbl0356.50022MR420428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.