Piani di traslazione derivabili
Rendiconti del Seminario Matematico della Università di Padova (1979)
- Volume: 61, page 271-284
- ISSN: 0041-8994
Access Full Article
topHow to cite
topLunardon, Guglielmo. "Piani di traslazione derivabili." Rendiconti del Seminario Matematico della Università di Padova 61 (1979): 271-284. <http://eudml.org/doc/107721>.
@article{Lunardon1979,
author = {Lunardon, Guglielmo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {ita},
pages = {271-284},
publisher = {Seminario Matematico of the University of Padua},
title = {Piani di traslazione derivabili},
url = {http://eudml.org/doc/107721},
volume = {61},
year = {1979},
}
TY - JOUR
AU - Lunardon, Guglielmo
TI - Piani di traslazione derivabili
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1979
PB - Seminario Matematico of the University of Padua
VL - 61
SP - 271
EP - 284
LA - ita
UR - http://eudml.org/doc/107721
ER -
References
top- [1] A.A. Albert, The finite planes of Ostrom, Bol. Soc. Mat. Mexicana, 11 (1966), pp. 1-13. Zbl0157.27003MR231271
- [2] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationgruppe, Math. Z., 60 (1954), pp. 156-186. Zbl0056.38503MR63056
- [3] A. Barlotti, On the definition of Baer subplanes of infinite planes, J. Geometry, 3 (1973), pp. 87-92. Zbl0252.50027MR341272
- [4] A. Barlotti, Representation and construction of projective planes and other geometric structures from projective spaces, Jber. Deutsch. Math.-Verein, 77 (1975), pp. 28-38. Zbl0319.50024MR500487
- [5] R.H. Bruck, Construction problems in finite projective spaces, in Combinatorial Mathematics and its Applications (Proc. Conf. Univ. North Carolina, Chapel Hill, N.C., 1967), Chapel Hill (1969), pp. 426-514. Zbl0206.23402MR250182
- [6] R.H. Bruck - R. C. BosE, The construction of translation planes from projective spaces, J. Algebra, 1 (1964), pp. 85-102. Zbl0117.37402MR161206
- [7] R.H. Bruck - R. C. BOSE, Linear representations of projective planes in projective spaces, J. Algebra4 (1966), pp. 117-172. Zbl0141.36801MR196590
- [8] A. Bruen, Spreads and a conjecture of Bruck and Bose, J. Algebra, 23 (1972), pp. 519-537. Zbl0245.50030MR308923
- [9] A. Bruen - J. A. THAS, Partial spreads, packing and hermitian manifolds in PG(3, q), Math. Z., 151 (1976), pp. 207-214. Zbl0322.50008MR423187
- [10] J. Cofman, Baer subplanes of affine and projective planes, Math. Z., 126 (1972), pp. 339-344. Zbl0222.50027MR305229
- [11] J. Cofman, Baer subplanes and Baer collineations of derivable projective planes, Abh. Math. Sem. Hamburg, 44 (1975), pp. 187-192. Zbl0316.50007MR400028
- [12] P. Dembowski, Finite geometries, Springer-Verlag (1968). Zbl0159.50001MR233275
- [13] J.W. Freeman, Reguli and pseudo-reguli in PG(3, q2), in corso di stampa su Geometriae Dedicata. Zbl0436.51005
- [14] D.R. Hughes - F. C. PIPER, Projective planes, Springer-Verlag (1972). Zbl0267.50018MR333959
- [15] D.E. Knuth, Finite semifields and projective planes, J. Algebra, 2 (1965), pp. 182-217. Zbl0128.25604MR175942
- [16] G. Lunardon, Proposizioni configurazionali in una classe di fibrazioni, Boll. U.M.I., 13-A (1976), pp. 404-413. Zbl0345.50012MR430956
- [17] H. Lüneburg, Die Suzukigruppen und ihre Geometrien, Lectures Notes in Mathematics10, Springer (1965). Zbl0136.01502MR207820
- [18] T.G. Ostrom, Semitranslation planes, Trans. Amer. Math. Soc., 111 (1964), pp. 1-18. Zbl0117.37303MR159255
- [19] T.G. Ostrom, Nets with critical deliciency, Pacif. J. Math., 14 (1964), pp. 1381-1387. Zbl0135.39302MR171215
- [20] T.G. Ostrom, Derivable nets, Canad. Math. Bull., 8 (1965), pp. 601-613. Zbl0137.40203MR194980
- [21] T.G. Ostrom, Finite translation planes, Lectures Notes in Mathematics, Springer (1970). Zbl0205.49901MR275274
- [22] O. Prohaska, Endliche ableitbare affinen Ebenen, Geometriae Dedicata, 1 (1972), pp. 6-17. Zbl0243.50009MR305227
- [23] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), pp. 1-76. Zbl0128.15002MR169117
- [24] R. Vincenti, Fibrazioni di un S3,q indotte da fibrazioni di un S3,q2 e rappresentazione spaziale dei sottopiani di Baer di un piano proiettivo, in corso di stampa sugli Atti Sem. Mat. Fis. Univ. Modena.
- [25] M. Walker, The collineation groups of derived translation planes, Geometriae Dedicata, 5 (1976), pp. 87-95. Zbl0329.50001MR470824
- [26] M. Walker, A class of translations planes, Geometriae Dedicata, 5 (1976), pp. 135-146. Zbl0356.50022MR420428
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.