An existence theorem for solutions of -th order nonlinear differential equations in the complex domain
Rendiconti del Seminario Matematico della Università di Padova (1979)
- Volume: 61, page 61-90
- ISSN: 0041-8994
Access Full Article
topHow to cite
topPowder, Charles. "An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain." Rendiconti del Seminario Matematico della Università di Padova 61 (1979): 61-90. <http://eudml.org/doc/107735>.
@article{Powder1979,
author = {Powder, Charles},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {existence theorem; n-th order nonlinear differential equations in the complex domain},
language = {eng},
pages = {61-90},
publisher = {Seminario Matematico of the University of Padua},
title = {An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain},
url = {http://eudml.org/doc/107735},
volume = {61},
year = {1979},
}
TY - JOUR
AU - Powder, Charles
TI - An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1979
PB - Seminario Matematico of the University of Padua
VL - 61
SP - 61
EP - 90
LA - eng
KW - existence theorem; n-th order nonlinear differential equations in the complex domain
UR - http://eudml.org/doc/107735
ER -
References
top- [1] S. Bank, An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl., 16 (1966), pp. 138-151. Zbl0173.33703MR212242
- [2] S. Bank, On the instability theory of differential polynomials, Ann. Mat. Pura Appl., 74 (1966), pp. 83-112. Zbl0149.29702MR204785
- [3] S. Bank, On the asymptotic behavior of solutions near an irregular singularity, Proc. Amer. Math. Soc., 18 (1967), pp. 15-21. Zbl0219.34040MR212243
- [4] S. Bank, On solutions having large rate of growth for nonlinear differential equations in the complex domain, J. Math. Anal. Appl., 22 (1968), pp. 129-143. Zbl0155.12504MR252728
- [5] S. Bank, An existence theorem for solutions of second order nonlinear ordinary differential equations in the complex domain, Rend. Sem. Mat. Univ. Padova, 41 (1968), pp. 276-299. Zbl0187.33401MR251283
- [6] E.W. Chamberlain, Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc., 107 (1963), pp. 261-272. Zbl0121.07201MR148974
- [7] W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 13 (1954), 81 pp. Zbl0059.07701MR67290
- [8] W. Strodt, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 26 (1957), 107 pp. Zbl0101.30003MR92901
- [9] W. Strodt, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc., 105 (1962), pp. 229-250. Zbl0113.03301MR140514
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.