# An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain

Rendiconti del Seminario Matematico della Università di Padova (1979)

- Volume: 61, page 61-90
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topPowder, Charles. "An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain." Rendiconti del Seminario Matematico della Università di Padova 61 (1979): 61-90. <http://eudml.org/doc/107735>.

@article{Powder1979,

author = {Powder, Charles},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {existence theorem; n-th order nonlinear differential equations in the complex domain},

language = {eng},

pages = {61-90},

publisher = {Seminario Matematico of the University of Padua},

title = {An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain},

url = {http://eudml.org/doc/107735},

volume = {61},

year = {1979},

}

TY - JOUR

AU - Powder, Charles

TI - An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 1979

PB - Seminario Matematico of the University of Padua

VL - 61

SP - 61

EP - 90

LA - eng

KW - existence theorem; n-th order nonlinear differential equations in the complex domain

UR - http://eudml.org/doc/107735

ER -

## References

top- [1] S. Bank, An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl., 16 (1966), pp. 138-151. Zbl0173.33703MR212242
- [2] S. Bank, On the instability theory of differential polynomials, Ann. Mat. Pura Appl., 74 (1966), pp. 83-112. Zbl0149.29702MR204785
- [3] S. Bank, On the asymptotic behavior of solutions near an irregular singularity, Proc. Amer. Math. Soc., 18 (1967), pp. 15-21. Zbl0219.34040MR212243
- [4] S. Bank, On solutions having large rate of growth for nonlinear differential equations in the complex domain, J. Math. Anal. Appl., 22 (1968), pp. 129-143. Zbl0155.12504MR252728
- [5] S. Bank, An existence theorem for solutions of second order nonlinear ordinary differential equations in the complex domain, Rend. Sem. Mat. Univ. Padova, 41 (1968), pp. 276-299. Zbl0187.33401MR251283
- [6] E.W. Chamberlain, Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc., 107 (1963), pp. 261-272. Zbl0121.07201MR148974
- [7] W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 13 (1954), 81 pp. Zbl0059.07701MR67290
- [8] W. Strodt, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 26 (1957), 107 pp. Zbl0101.30003MR92901
- [9] W. Strodt, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc., 105 (1962), pp. 229-250. Zbl0113.03301MR140514

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.